
Implementation of ECDSA in Combo6X Card

Tomáš Davidovič
CTU in Prague, FEE, Department of Computer Science and Engineering,

Karlovo nám. 13, 121 35 Praha 2, Czech Republic
davidt2@fel.cvut.cz

Martin Havlan

CTU in Prague, FEE, Department of Telecommunications,
Technická 2, 166 27 Praha 6, Czech Republic

havlan@fel.cvut.cz

Martin Novotný
CTU in Prague, FEE, Department of Computer Science and Engineering,

Karlovo nám. 13, 121 35 Praha 2, Czech Republic
novotnym@fel.cvut.cz

Jan Schmidt

CTU in Prague, FEE, Department of Computer Science and Engineering,
Karlovo nám. 13, 121 35 Praha 2, Czech Republic

schmidt@fel.cvut.cz

Abstract. This paper describes imple-

mentation of a cryptographic coprocessor
performing operations on elliptic curve
points with affine coordinates in GF(2m).
The coprocessor will be implemented in
Xilinx Virtex II Pro XC2VP50 on a PCI-X
card Combo6X. The goal is to compare
the performance of solutions based on
polynomial and normal bases when im-
plemented into a complex system. Be-
cause of this, the coprocessor has inter-
changeable arithmetic units and a micro-
programmable controller, allowing easy
switching between both architectures. The
paper describes the basics of the used
algorithms, their implementation and pro-
poses measurement techniques for com-
paring the effectiveness of both variants in
the context of a PC system.

Keywords: ECDSA, Elliptic Curve Crypto-
graphy, VHDL, coprocessor, Combo6X,
FPGA

1. Introduction

While Elliptic Curve Digital Signature
Algorithm (ECDSA) with affine point coor-
dinates in GF(2m) has been standar-

dized [4], there are still options with consi-
derable degree of freedom. Our task is to
implement a coprocessor that will help us
decide whether, for a specific key length,
normal basis performs better than poly-
nomial basis.

Addition and subtraction of two ele-
ments is the same in both bases and is
implemented as a simple bitwise XOR
operation.

Squaring, multiplication and division
are specific for each respective basis, but
can be viewed as blackboxes and incorpo-
rated as arithmetic units into a universal
coprocessor, using a common interface.

We will first describe the used, and
proposed, algorithms and their modifica-
tions. Then we will describe the current
coprocessor architecture. Finally we pro-
pose some measurement techniques.

2. Algorithms

The desired result obtained from the
coprocessor is a scalar multiple of a point:
k*P = P+P+...+P (k-times).

We will use Horner scheme (add-and-
double algorithm) to evaluate the scalar
point multiple. For this we need to imple-

mailto:schmidt@fel.cvut.cz
mailto:havlan@fel.cvut.cz
mailto:schmidt@fel.cvut.cz
mailto:schmidt@fel.cvut.cz

ment two operations on elliptic curve
points, addition of two points (P+Q) and
point doubling (2*P=P+P).

Each point is characterized by its
coordinates and, regardless of the coordi-
nate system used, the coordinates are
elements of GF(2m). All point operations
can therefore be expressed using the
following field operations: addition, multip-
lication, division (or inversion) and squar-
ing [4].

As already stated, addition and sub-
traction are the same for both polynomial
and normal bases and are a simple bitwise
XOR.

While squaring can be performed us-
ing multiplication, there is a simpler, single
cycle, squaring algorithm in both bases.
Squaring in polynomial basis consists of
“spreading” the polynomial to double
length, with zeros at each odd position and
then reduction modulo the field polynomi-
al. For small field polynomials (trinomials
and pentanomials) the reduction can be
done using a small number of XOR gates
for each bit, usually two or three gates for
the most typical values of m. The XOR
gate mesh is generated separately and is
unique for each m and each field poly-
nomial. In normal basis, squaring is per-
formed by simple cyclic-shift (rotation).

Multiplication in normal basis is com-
puted using pipelined bit-serial Massey-
Omura [6] multiplier. It also allows simulta-
neous processing of D bits, referenced as
a “digit”.

The polynomial basis multiplier, eva-

luating the expression C = A  B mod F(x)
(where F(x) is the field polynomial), is
currently a simple LSB (least significant
bit) multiplier. Further research is being
made into possibilities of implementing
simultaneous processing of D bits in poly-
nomial basis as well, to allow better scala-
bility of the design.

The division is generally performed as
multiplication of the dividend and the
inverse value of the divisor.

In normal basis the Itoh, Teechai, Tsu-
jii [5] algorithm is used for inversion of the
divider. The ITT algorithm is based on
Fermat’s little theorem which states, that
ap=a mod p, therefore ap-2 = a-1 mod p.
This principle can be used for any basis,
but the extended Euclidean algorithm

(EEA) proved to be more efficient when it
can be used.

In polynomial basis we therefore use
the EEA that also allows immediate divi-
sion instead of just inversion.

The algorithm for point addition and
point doubling is shown on Fig. 1.

Figure 1. Addition of two points

3. Architecture

The current coprocessor design [2]
uses the data structure shown on Fig. 2. It
is designed to implement the algorithm
described on Fig. 1.

Figure 2. Main architecture data path

All but two data paths have m-bit

width; the width of Input and Output paths

depends on width of the interface. Current-
ly the width is 32 bits, the standard PCI is
used. We plan to extend the width to 64
bits for use with PCI-X (PCI-64).

The work register W is implemented as
a shift register, shifting its content by
16 bits, to allow input and output of data of
variable length via PCI interface. The other
16 bits of 32 bit interface are used as
address and various control signals for the
processor. Because the Combo6X PCI
interface is different from the proposed
PCI interface and it uses separate buses
for data and address, the work register W
will be changed to shift by 32, respectively
64, bits, depending on the concrete PC
architecture used.

The Inverter block here represents
both inversion and multiplication units,
because in both normal and polynomial
basis the units are unified, doing just
slightly different operations over the same
set of registers.

Data memory is represented by block
RAMs and contains 32 m-bit registers.
Four of them are used for point coordi-
nates, one is used for the scalar multipli-
cand k, and the rest is used for interme-
diate results and reserved for future use.

We will need to use each of k’s bits for
the add-and-double algorithm. It was
decided to use just k’s MSB and imple-
ment logical rotation in one of the paths
leading to the data memory.

The whole architecture is designed to
be universal, allowing not only affine coor-
dinates, but also projective coordinates.
To make the coprocessor as universal as
possible, there is also a microprogramma-
ble controller that also allows easy change
of the coprocessor’s behavior without any
need to re-synthesize the whole design.

It is possible that the architecture could
be finetuned to perform the algorithm
faster, but possibly at the loss of universal-
ity. This possibility is also being re-
searched.

4. Combo6X

Combo6X card, developed by Masaryk
University and TU Brno, has been chosen
as our target platform because it offers all
the required resources and tools without
the necessity of a complicated hardware
and software development. There is also a

wide range of networking applications
(including, but not limited to, fast network
cards and hardware routers) and the
crypto coprocessor can be easily incorpo-
rated to provide support for an automatic
or semi-automatic key exchange, should it
be desired. Current version of the card
supports PCI-X, but Combo6E, supporting
PCI-Express, is being developed and will
offer even higher transfer speeds with
minimal changes to the current designs.

Interface between PC and the card is
very straightforward. After the initialization,
we can simply read (and write) to any
address of any Combo6-family card in the
computer. We can read either a single
32-bit word, or an array of four 32-bit
words. The first can be used to check
whether the processing has already fi-
nished, while the later will be used for
transfer of wide data values.

On the card side of the interface, there
are several components that offer a simple
way to pass data along the PCI. Normally
the transfer runs at 100MHz, with 16-bits
per clock cycle, which gives us transfer
speed 1.6Gbps. With 160 bit keys this
would mean 500ns of transfer per an
evaluated key with the expected
processing time about 40 µs. Should this
prove to be too slow, it is also possible to
speed up the transfer at a cost of losing
some of the interface universality.

The initial design will use the current
PCI transfer components and modifica-
tions will be considered based on the test
results.

5. Polynomial Digit Multiplier

Probably the biggest problem of the
current architecture is that the polynomial
multiplier is purely bit-serial. This wasn’t a
big issue when the design was tested only
by a post-place-and-route simulation,
where it could be simply run at the highest
safe frequency. However, in a real hard-
ware system we are limited by frequencies
available from the crystal. Namely for
Combo6X it is 50, 100 and 125MHz, with
100MHz being the most likely working
frequency. If we chose a work frequency
different from the transfer one, we would
need to solve problems associated with a
dual-clock design.

It is desirable to have the design as
scalable as possible. The scalability allows
us to maximize the throughput while keep-
ing time constraints given by the chosen
frequency.

It has been proposed to use a different
polynomial multiplier. Instead of the bit-
serial multiplier a digit-serial (also refe-
renced as bit-parallel) multiplier will be
used.

The principle of a digit-serial multiplier
is similar to that of a LSB multiplier, but
instead of multiplying by the least signifi-
cant bit we will multiply by the least signifi-
cant digit. Therefore we will divide the
operand B into D-bit wide digits, padding
the most significant bits of the operand
with zeros if necessary.

To get the result of a single digit mul-
tiplication, we add together results of AND
between Nth bit of the lowest multiplier
digit and operand A shifted left by N bits,

where N  0, D-1. The result can be
seen on Fig. 3., where bDi+N denotes Nth
bit of the i-th lowest digit, black dots
represent ANDs and grey bars represent
bits to be added (XORed) together. [3]

Figure 3. Multiple digit adder core

The results of each single digit multip-

lication are added to an accumulator that
has m+D-1 bits. When the whole multipli-
cation is finished, the result will be
C = Acc mod F(x), where F(x) is the field
polynomial.

After each digit multiplication, the ope-
rand A has to be multiplied by xD, therefore

A = A  xD mod F(x). To make the reduc-
tion by F(x) possible in a single step, the
following condition has to be fulfilled. If we
represent a generating polynomial as
xm+xk+…+1, the reduction in a single step
is possible when the digit size D ≤ m – k.
[3]

6. Proposed tests

Because our goal is to measure and
compare the speed of the coprocessors
implemented in a Combo6X card in the
context of a whole PC system, we have to
propose methods for precise measure-
ment of the whole evaluation process.

Given a fixed frequency, we can com-
pare the speed of the coprocessors by
counting the number of clock cycles it
takes to finish data processing. However,
this is based solely on the design and the
data processed and doesn’t require a
hardware implementation to be measured.

Our main focus therefore lies in mea-
surement of the whole process, including
the transfer of data over PCI. Each data
transfer has two important parameters,
throughput and latency [1]. With the max-
imal throughput 1.6Gbps, the transfer of
data for a single key evaluation for m =
160 takes 500 ns, which doesn’t cause
any significant slow down of the coproces-
sor function. The main problem seems to
be the latency.

Two problems with latency accompany
the measurement. The first one is that the
latency of the whole time measurement is
comparable with execution time of a single
key evaluation, which makes software
measurement of just a single evaluation
virtually impossible.

The obvious solution to this problem is
to measure the time of several computa-
tions. There are two possible ways to do
this. The first one is to simply perform a
number of single evaluations. The second
way implements a buffer on the card,
transfers a batch of input data into the
card, lets it all get processed and then
fetches all the results, effectively using PCI
burst mode in both directions.

However, both approaches have to
deal with the second latency problem. This
problem is caused by context switching.
Let’s assume we use batch processing of
a thousand keys, using the hardware
buffer variant. We assume that the whole
evaluation will take about 40 ms. If the
evaluation was done by software, we
could simply measure CPU time of the
given process. But, to measure the per-
formance of hardware solution we need to
perform the measurement using system
time. If the measuring process loses con-

text close to the end of the processing and
gains it back one time slot (i.e. usually 100
ms) later, the measured period will be
almost 140 ms instead of expected 40 ms.

To solve this, we decided to divide the
time measurement into three periods.
During the first time period the transfer of
input data is measured. During the second
time period the processing of data inside
the coprocessor is measured. Finally, in
the last time period, the transfer of results
from the coprocessor to host computer is
measured. All three time periods will be
measured in hardware by timers and the
driving idea is that once the transfer of
data is started, it won’t be interrupted by a
context switch. But if it happens, it can be
easily detected as an extreme increase of
the transfer time and the whole experiment
will then be repeated. The final time will
then be a simple sum of the three meas-
ured time periods, ignoring the possible
delay between the end of processing and
the start of the results transfer.

This method should give us good in-
sight into how fast can the coprocessors
perform in the context of a PC system,
without the current system load interfering
with the measurements.

7. Conclusions

We have described the basic principles
and algorithms used for ECDSA and the
current state of the coprocessor design.
We proposed using a digit-serial multiplier
for polynomial basis to gives us a better
scalability of the whole processor, allowing
us to maximize throughput of the proces-
sor at a given frequency.

We also described several key prob-
lems in the measurement of the perfor-
mance of the whole system and proposed
a method that will minimize influence of
the system load on the measurement.

8. Acknowledgement

This work has been supported by
CESNET, project 140R1/2005.

9. References

[1] Bečvář, M. - Schmidt, J.: Reconfigur-
able Acceleration of Intel PC: A Quan-
titative Analysis, Proceedings of IEEE

Design and Diagnostics of Electronic
Circuits and Systems Workshop. Gyor:
Széchenyi István University of Applied
Sciences, 2001, s. 93-96. ISBN 963-
7175-16-4.

[2] Borůvka, O.: Kryptografický procesor,
CTU in Prague, Diploma thesis

[3] Guajardo, J. - Güneysu, T.- Kumar, S.
S. - Paar, C. – Pelzl, J.: "Efficient
Hardware Implementation of Finite
Fields with Applications to Cryptogra-
phy", Acta Applicandae Mathematicae:
An International Survey Journal on
Applying Mathematics and Mathemati-
cal Applications, Volume 93, Numbers
1-3, pp. 75-118, September 2006.

[4] IEEE P1363 Standard for Public-key
Cryptography (Draft Version 13). IEEE,
November 1999

[5] Itoh, T. - Teechai, O. – Tsujii, S.: A
Fast Algorithm for Computing Multip-
licative Inverse in GF(2t) using normal
bases. J. Society for electronic Com-
munications (Japan) 44 (1986), 31-36.

[6] Omura, J., Massey, J.: Computational
Method and Apparatus for Finite Field
Arithmetic. U.S. patent number
4,587,627, 1986

