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Abstract. This paper describes imple-

mentation of a cryptographic coprocessor 
performing operations on elliptic curve 
points with affine coordinates in GF(2m). 
The coprocessor will be implemented in 
Xilinx Virtex II Pro XC2VP50 on a PCI-X 
card Combo6X. The goal is to compare 
the performance of solutions based on 
polynomial and normal bases when im-
plemented into a complex system. Be-
cause of this, the coprocessor has inter-
changeable arithmetic units and a micro-
programmable controller, allowing easy 
switching between both architectures. The 
paper describes the basics of the used 
algorithms, their implementation and pro-
poses measurement techniques for com-
paring the effectiveness of both variants in 
the context of a PC system. 
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1. Introduction 

While Elliptic Curve Digital Signature 
Algorithm (ECDSA) with affine point coor-
dinates in GF(2m) has been standar-

dized [4], there are still options with consi-
derable degree of freedom. Our task is to 
implement a coprocessor that will help us 
decide whether, for a specific key length, 
normal basis performs better than poly-
nomial basis. 

Addition and subtraction of two ele-
ments is the same in both bases and is 
implemented as a simple bitwise XOR 
operation. 

Squaring, multiplication and division 
are specific for each respective basis, but 
can be viewed as blackboxes and incorpo-
rated as arithmetic units into a universal 
coprocessor, using a common interface.  

We will first describe the used, and 
proposed, algorithms and their modifica-
tions. Then we will describe the current 
coprocessor architecture. Finally we pro-
pose some measurement techniques. 

2. Algorithms 

The desired result obtained from the 
coprocessor is a scalar multiple of a point: 
k*P = P+P+...+P (k-times). 

We will use Horner scheme (add-and-
double algorithm) to evaluate the scalar 
point multiple. For this we need to imple-
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ment two operations on elliptic curve 
points, addition of two points (P+Q) and 
point doubling (2*P=P+P). 

Each point is characterized by its 
coordinates and, regardless of the coordi-
nate system used, the coordinates are 
elements of GF(2m). All point operations 
can therefore be expressed using the 
following field operations: addition, multip-
lication, division (or inversion) and squar-
ing [4]. 

As already stated, addition and sub-
traction are the same for both polynomial 
and normal bases and are a simple bitwise 
XOR. 

While squaring can be performed us-
ing multiplication, there is a simpler, single 
cycle, squaring algorithm in both bases. 
Squaring in polynomial basis consists of 
“spreading” the polynomial to double 
length, with zeros at each odd position and 
then reduction modulo the field polynomi-
al. For small field polynomials (trinomials 
and pentanomials) the reduction can be 
done using a small number of XOR gates 
for each bit, usually two or three gates for 
the most typical values of m. The XOR 
gate mesh is generated separately and is 
unique for each m and each field poly-
nomial. In normal basis, squaring is per-
formed by simple cyclic-shift (rotation). 

Multiplication in normal basis is com-
puted using pipelined bit-serial Massey-
Omura [6] multiplier. It also allows simulta-
neous processing of D bits, referenced as 
a “digit”.  

The polynomial basis multiplier, eva-

luating the expression C = A  B mod F(x) 
(where F(x) is the field polynomial), is 
currently a simple LSB (least significant 
bit) multiplier. Further research is being 
made into possibilities of implementing 
simultaneous processing of D bits in poly-
nomial basis as well, to allow better scala-
bility of the design. 

The division is generally performed as 
multiplication of the dividend and the 
inverse value of the divisor.  

In normal basis the Itoh, Teechai, Tsu-
jii [5] algorithm is used for inversion of the 
divider. The ITT algorithm is based on 
Fermat’s little theorem which states, that 
ap=a mod p, therefore ap-2 = a-1 mod p. 
This principle can be used for any basis, 
but the extended Euclidean algorithm 

(EEA) proved to be more efficient when it 
can be used. 

In polynomial basis we therefore use 
the EEA that also allows immediate divi-
sion instead of just inversion. 

The algorithm for point addition and 
point doubling is shown on Fig. 1. 

 
Figure 1. Addition of two points 

3. Architecture 

The current coprocessor design [2] 
uses the data structure shown on Fig. 2. It 
is designed to implement the algorithm 
described on Fig. 1.  

 
Figure 2. Main architecture data path 

 
All but two data paths have m-bit 

width; the width of Input and Output paths 



depends on width of the interface. Current-
ly the width is 32 bits, the standard PCI is 
used. We plan to extend the width to 64 
bits for use with PCI-X (PCI-64). 

The work register W is implemented as 
a shift register, shifting its content by 
16 bits, to allow input and output of data of 
variable length via PCI interface. The other 
16 bits of 32 bit interface are used as 
address and various control signals for the 
processor. Because the Combo6X PCI 
interface is different from the proposed 
PCI interface and it uses separate buses 
for data and address, the work register W 
will be changed to shift by 32, respectively 
64, bits, depending on the concrete PC 
architecture used. 

The Inverter block here represents 
both inversion and multiplication units, 
because in both normal and polynomial 
basis the units are unified, doing just 
slightly different operations over the same 
set of registers. 

Data memory is represented by block 
RAMs and contains 32 m-bit registers. 
Four of them are used for point coordi-
nates, one is used for the scalar multipli-
cand k, and the rest is used for interme-
diate results and reserved for future use. 

We will need to use each of k’s bits for 
the add-and-double algorithm. It was 
decided to use just k’s MSB and imple-
ment logical rotation in one of the paths 
leading to the data memory. 

The whole architecture is designed to 
be universal, allowing not only affine coor-
dinates, but also projective coordinates. 
To make the coprocessor as universal as 
possible, there is also a microprogramma-
ble controller that also allows easy change 
of the coprocessor’s behavior without any 
need to re-synthesize the whole design. 

It is possible that the architecture could 
be finetuned to perform the algorithm 
faster, but possibly at the loss of universal-
ity. This possibility is also being re-
searched. 

4. Combo6X 

Combo6X card, developed by Masaryk 
University and TU Brno, has been chosen 
as our target platform because it offers all 
the required resources and tools without 
the necessity of a complicated hardware 
and software development. There is also a 

wide range of networking applications 
(including, but not limited to, fast network 
cards and hardware routers) and the 
crypto coprocessor can be easily incorpo-
rated to provide support for an automatic 
or semi-automatic key exchange, should it 
be desired. Current version of the card 
supports PCI-X, but Combo6E, supporting 
PCI-Express, is being developed and will 
offer even higher transfer speeds with 
minimal changes to the current designs. 

Interface between PC and the card is 
very straightforward. After the initialization, 
we can simply read (and write) to any 
address of any Combo6-family card in the 
computer. We can read either a single 
32-bit word, or an array of four 32-bit 
words. The first can be used to check 
whether the processing has already fi-
nished, while the later will be used for 
transfer of wide data values. 

On the card side of the interface, there 
are several components that offer a simple 
way to pass data along the PCI. Normally 
the transfer runs at 100MHz, with 16-bits 
per clock cycle, which gives us transfer 
speed 1.6Gbps. With 160 bit keys this 
would mean 500ns of transfer per an 
evaluated key with the expected 
processing time about 40 µs. Should this 
prove to be too slow, it is also possible to 
speed up the transfer at a cost of losing 
some of the interface universality. 

The initial design will use the current 
PCI transfer components and modifica-
tions will be considered based on the test 
results. 

5. Polynomial Digit Multiplier 

Probably the biggest problem of the 
current architecture is that the polynomial 
multiplier is purely bit-serial. This wasn’t a 
big issue when the design was tested only 
by a post-place-and-route simulation, 
where it could be simply run at the highest 
safe frequency. However, in a real hard-
ware system we are limited by frequencies 
available from the crystal. Namely for 
Combo6X it is 50, 100 and 125MHz, with 
100MHz being the most likely working 
frequency. If we chose a work frequency 
different from the transfer one, we would 
need to solve problems associated with a 
dual-clock design.  



It is desirable to have the design as 
scalable as possible. The scalability allows 
us to maximize the throughput while keep-
ing time constraints given by the chosen 
frequency.  

It has been proposed to use a different 
polynomial multiplier. Instead of the bit-
serial multiplier a digit-serial (also refe-
renced as bit-parallel) multiplier will be 
used.  

The principle of a digit-serial multiplier 
is similar to that of a LSB multiplier, but 
instead of multiplying by the least signifi-
cant bit we will multiply by the least signifi-
cant digit. Therefore we will divide the 
operand B into D-bit wide digits, padding 
the most significant bits of the operand 
with zeros if necessary. 

To get the result of a single digit mul-
tiplication, we add together results of AND 
between Nth bit of the lowest multiplier 
digit and operand A shifted left by N bits, 

where N  0, D-1. The result can be 
seen on Fig. 3., where bDi+N denotes Nth 
bit of the i-th lowest digit, black dots 
represent ANDs and grey bars represent 
bits to be added (XORed) together. [3] 

 
Figure 3. Multiple digit adder core 

 
The results of each single digit multip-

lication are added to an accumulator that 
has m+D-1 bits. When the whole multipli-
cation is finished, the result will be 
C = Acc mod F(x), where F(x) is the field 
polynomial. 

After each digit multiplication, the ope-
rand A has to be multiplied by xD, therefore 

A = A  xD mod F(x). To make the reduc-
tion by F(x) possible in a single step, the 
following condition has to be fulfilled. If we 
represent a generating polynomial as 
xm+xk+…+1, the reduction in a single step 
is possible when the digit size D ≤ m – k. 
[3] 

6. Proposed tests 

Because our goal is to measure and 
compare the speed of the coprocessors 
implemented in a Combo6X card in the 
context of a whole PC system, we have to 
propose methods for precise measure-
ment of the whole evaluation process. 

Given a fixed frequency, we can com-
pare the speed of the coprocessors by 
counting the number of clock cycles it 
takes to finish data processing. However, 
this is based solely on the design and the 
data processed and doesn’t require a 
hardware implementation to be measured. 

Our main focus therefore lies in mea-
surement of the whole process, including 
the transfer of data over PCI. Each data 
transfer has two important parameters, 
throughput and latency [1]. With the max-
imal throughput 1.6Gbps, the transfer of 
data for a single key evaluation for m = 
160 takes 500 ns, which doesn’t cause 
any significant slow down of the coproces-
sor function. The main problem seems to 
be the latency. 

Two problems with latency accompany 
the measurement. The first one is that the 
latency of the whole time measurement is 
comparable with execution time of a single 
key evaluation, which makes software 
measurement of just a single evaluation 
virtually impossible. 

The obvious solution to this problem is 
to measure the time of several computa-
tions. There are two possible ways to do 
this. The first one is to simply perform a 
number of single evaluations. The second 
way implements a buffer on the card, 
transfers a batch of input data into the 
card, lets it all get processed and then 
fetches all the results, effectively using PCI 
burst mode in both directions. 

However, both approaches have to 
deal with the second latency problem. This 
problem is caused by context switching. 
Let’s assume we use batch processing of 
a thousand keys, using the hardware 
buffer variant. We assume that the whole 
evaluation will take about 40 ms. If the 
evaluation was done by software, we 
could simply measure CPU time of the 
given process. But, to measure the per-
formance of hardware solution we need to 
perform the measurement using system 
time. If the measuring process loses con-



text close to the end of the processing and 
gains it back one time slot (i.e. usually 100 
ms) later, the measured period will be 
almost 140 ms instead of expected 40 ms.  

To solve this, we decided to divide the 
time measurement into three periods. 
During the first time period the transfer of 
input data is measured. During the second 
time period the processing of data inside 
the coprocessor is measured. Finally, in 
the last time period, the transfer of results 
from the coprocessor to host computer is 
measured. All three time periods will be 
measured in hardware by timers and the 
driving idea is that once the transfer of 
data is started, it won’t be interrupted by a 
context switch. But if it happens, it can be 
easily detected as an extreme increase of 
the transfer time and the whole experiment 
will then be repeated. The final time will 
then be a simple sum of the three meas-
ured time periods, ignoring the possible 
delay between the end of processing and 
the start of the results transfer. 

This method should give us good in-
sight into how fast can the coprocessors 
perform in the context of a PC system, 
without the current system load interfering 
with the measurements. 

7. Conclusions 

We have described the basic principles 
and algorithms used for ECDSA and the 
current state of the coprocessor design. 
We proposed using a digit-serial multiplier 
for polynomial basis to gives us a better 
scalability of the whole processor, allowing 
us to maximize throughput of the proces-
sor at a given frequency. 

We also described several key prob-
lems in the measurement of the perfor-
mance of the whole system and proposed 
a method that will minimize influence of 
the system load on the measurement. 
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