
Progressive Light Transport Simulation on the GPU:
Survey and Improvements (rev 1.)
TOMÁŠ DAVIDOVIČ
Saarland University, Intel VCI
and
JAROSLAV KŘIVÁNEK
Charles University in Prague, Faculty of Mathematics and Physics
and
MILOŠ HAŠAN
Autodesk, Inc.
and
PHILIPP SLUSALLEK
Saarland University, DFKI

Graphics Processing Units (GPUs) recently became general enough to en-
able implementation of a variety of light transport algorithms. However, the
efficiency of these GPU implementations has received relatively little atten-
tion in the research literature and no systematic study on the topic exists
to date. The goal of our work is to fill this gap. Our main contribution is a
comprehensive and in-depth investigation of the efficiency of the GPU im-
plementation of a number of classic as well as more recent progressive light
transport simulation algorithms. We present several improvements over the
state-of-the-art. In particular, our Light Vertex Cache, a new approach to
mapping connections of sub-path vertices in Bidirectional Path Tracing on
the GPU, outperforms the existing implementations by 30-60%. We also
describe a first GPU implementation of the recently introduced Vertex Con-
nection and Merging algorithm [Georgiev et al. 2012], showing that even
relatively complex light transport algorithms can be efficiently mapped on
the GPU. With the implementation of many of the state-of-the-art algo-
rithms within a single system at our disposal, we present a unique direct
comparison and analysis of their relative performance.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Raytracing

Additional Key Words and Phrases: Global Illumination, GPU, High Per-
formance, Bidirectional Path Tracing, Vertex Connection and Merging

davidovic@cs.uni-saarland.de; jaroslav.krivanek@mff.cuni.cz
milos.hasan@gmail.com; slusallek@cs.uni-saarland.de
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
© YYYY ACM 0730-0301/YYYY/14-ARTXXX $10.00
DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Global illumination research has recently focused on progressive
global illumination algorithms: ones that converge to the cor-
rect solution to the rendering equation (under some assumptions)
given enough time, and display partial results during convergence.
Well-known approaches such as Path Tracing and Bidirectional
Path Tracing belong to this category. Furthermore, recent advances
brought more such algorithms: Progressive Photon Mapping (in-
cluding a bidirectional version), and Vertex Connection and Merg-
ing.

On the other hand, graphics processing units (GPUs) became
more flexible over recent years, and a proliferation of global illu-
mination algorithms were ported to them. These ports have mostly
focused on proof-of-concept GPU implementations, showing a per-
formance improvement over CPU rendering.

We take it as established that progressive global illumination
algorithms are useful, and that they can be ported to the GPU,
achieving significant speedups. But are these implementations opti-
mal? And which progressive algorithms perform the best on GPUs?
These questions are far from answered; there is currently a com-
plete lack of such a rigorous and systematic study of the implemen-
tation and performance of different progressive global illumination
algorithms on GPUs.

Our work fills this wide gap with a first comprehensive and in-
depth investigation of the problem. We survey and reimplement the
best published techniques for GPU-based Path Tracing, Bidirec-
tional Path Tracing, and Progressive Photon Mapping, so we can
analyze the impact of both high-level and low-level optimizations
on their performance. We take advantage of the lessons learned
from this investigation to develop the first GPU implementation
of the recent Vertex Connection and Merging algorithm [Georgiev
et al. 2012] (the algorithm has been independently developed by
Hachisuka et al. [2012] as Unified Path Space, we use the for-
mer name), showing that even relatively complex light transport
algorithms can be efficiently mapped on the GPU. In addition,
we present new techniques that outperform the existing ones in
most cases. For example, our Light Vertex Cache, a new approach
to mapping connections of sub-path vertices in Bidirectional Path
Tracing on the GPU, outperforms the state-of-the-art implementa-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

2 • T. Davidovič et al.

tions by 30-60%. With the implementation of the aforementioned
algorithms in a single system, we provide a detailed comparison of
their performance on scenes with various characteristics, and pro-
vide a comprehensive in-depth analysis of the findings.

Our work can have broad benefits in both research and indus-
try, ranging from low-level implementation insights for the practi-
tioner, to high-level implications for driving researchers’ focus to-
wards finding algorithms and implementation techniques that im-
prove upon the plots shown in our results.

2. RELATED WORK

Our work focuses on progressive Monte Carlo methods that con-
verge to the solution of the Rendering Equation [Kajiya 1986]. An
overview of these methods along with the challenges associated
with their GPU implementation is given in Section 3. In the rest of
this section, we discuss related work on other GPU-based global
illumination approaches, as well as on ray shooting.

Realtime Global Illumination. A large volume of work has fo-
cused on realtime global illumination on the GPU. To achieve this
ambitious goal, the methods generally offer only an approximate
light transport solution. Because our focus is on algorithms that
converge to the exact solution, we refer to [Ritschel et al. 2012] for
an overview of the realtime methods.

Many-light methods are an important class of real-time global
illumination algorithms based on Instant Radiosity [Keller 1997].
These methods first distribute a number of virtual lights into the
scene, approximating the global illumination, and then each pixel
is illuminated by a selected subset of the lights. Please refer to
[Křivánek et al. 2012; Dachsbacher et al. 2013] for a review.

Ray Shooting. At the heart of virtually every light transport al-
gorithm is a ray shooting query, both in the form of finding the
closest intersection along a given ray, and testing visibility between
two points. The research in this area focuses on three main issues:
selection of a suitable acceleration structure, algorithms for their
effective construction, and algorithms for their effective traversal.

The initial research on GPU ray shooting focused on overcoming
the hardware limitations of then current GPUs by using specially
adapted data structures and traversal algorithms [Carr et al. 2002;
Foley and Sugerman 2005; Popov et al. 2007]. More recently, Aila
and Laine [2009; 2012] showed how to approach the theoretical
peak ray casting performance using the Spatial Bounding Volume
Hierarchies (SBVH) [Stich et al. 2009], which became the structure
of choice for GPU. A large body of work focuses on fast construc-
tion of the acceleration structures directly on the GPU, to allow
interactive rendering of dynamic geometry. Most of this research
focuses on BVHs [Lauterbach et al. 2009; Pantaleoni and Luebke
2010; Hou et al. 2011; Karras and Aila 2013], uniform grids [Kalo-
janov and Slusallek 2009] and kd-trees [Zhou et al. 2008]. We refer
the reader to [Havran 2000; Aila et al. 2013] for an overview of
CPU-based acceleration structure construction.

Well-established high-performance ray shooting solutions are
publicly available. These libraries include Intel’s Embree [Woop
et al. 2013] (aimed at more traditional SIMD architectures),
NVIDIA’s OptiX [Parker et al. 2010], and the software framework
of Karras et al. [2012], which is the basis of our implementation.

3. OVERVIEW

Tracing full light transport paths is the most important building
block for all the investigated light transport algorithms. In Sec-
tion 4, dedicated to Path Tracing [Kajiya 1986], we focus on find-
ing the best implementation of this building block. While Purcell

et al. [2002] deals with mapping Path Tracing to the limited pro-
grammability of then current GPUs, focus of the more recent work
is on the full utilization of the GPU. The main challenge of ef-
ficient Path Tracing implementation is reduction of thread diver-
gence within warps, caused by paths of different lengths; a few
threads are processing the long paths, while other threads are idle.
Novák et al. [2010] propose to use path regeneration, where per-
sistent threads whose path has already terminated are assigned a
new path from a larger pool of paths. Van Antwerpen [2011a] im-
proves on this approach by compacting the paths so all regener-
ated paths are processed in a contiguous block, further increasing
thread coherence. We examine their approaches, determine their
best kernel configurations for the current GPU architectures, and
test them against simple, yet previously unpublished, single-kernel
implementations.

Section 5 focuses on the main challenge in implementing Bidi-
rectional Path Tracing [Lafortune and Willems 1993; Veach and
Guibas 1994; Veach and Guibas 1995], that is, efficient evaluation
of camera and light sub-path vertex connections. The key GPU
challenge is storing and connecting sub-paths of varying lengths.
Novák et al. [2010] address this issue by modifying the basic algo-
rithm to limit the light sub-paths to a maximum length of 5. Van
Antwerpen [2011b] also modifies the algorithm and avoids stor-
ing sub-paths by retracing a full light sub-path for each segment
of the camera sub-path, so only one segment has to be stored at
a given time. His other approach [van Antwerpen 2011a] uses a
user-defined maximum path length to conservatively pre-allocate
memory for the sub-paths. In this section we evaluate these mod-
ifications, as well as propose a new algorithm, based on the Light
Vertex Cache, which allows for a simple implementation and out-
performs the current state-of-the-art by 30-60%.

In Section 6, we investigate methods based on Photon Map-
ping. Spatial data structures used to accelerate photon map queries
are the main challenge and the focus of our investigation. To avoid
the prohibitive cost of transfering all the photons to the CPU, it is
necessary to build the acceleration structure directly on the GPU.
Zhou et al. [2008] show that it is possible to build kd-trees at in-
teractive rates. However, this approach exhibits random memory
access patterns, which are suboptimal for the GPU. Alternatively,
grids can be used both for k-NN and range queries [Purcell et al.
2003; Hachisuka et al. 2008]. Hachisuka and Jensen [Hachisuka
and Jensen 2010] also propose the Stochastic Hash Grid, which
avoids an explicit construction phase at the cost of storing only a
subset of the generated photons. We examine and evaluate these
acceleration structures, and provide some optimizations to further
accelerate the queries.

Using the experience gathered above allows us to present in Sec-
tion 7 the first GPU implementation of the recently introduced Ver-
tex Connection and Merging algorithm [Georgiev et al. 2012],
which combines both Bidirectional Path Tracing and Progressive
Photon Mapping in a common framework and allows for efficient
handling of a wide range of lighting effects.

Having implemented many of the state-of-the-art light transport
simulation algorithms, we have a unique opportunity to compare
them with each other. In Section 8 we compare the convergence
graphs of the best implementation of each of the introduced algo-
rithms on a set of six diverse scenes, explain the behavior of each
algorithm with respect to the scene characteristics and draw conclu-
sions as to which algorithm is best suited for which type of scene.

Summary of Challenges Associated with GPUs. There are
three main challenges in efficient implementation of light trans-
port algorithms on the GPU. First is code divergence within a warp
which can greatly reduce the GPU utilization due to the SIMD na-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

Light Transport Simulation on GPU • 3

ture of execution units. Second, the memory management possi-
bilities from within the GPU code are limited at best and GPU al-
gorithms have to have their memory requirements known prior to
kernel execution. Efficient GPU utilization requires a large number
(several thousand) threads executed in parallel, which prevents gen-
erous allocation of per-thread memory as a solution to the memory
management challenge. Third, to utilize the full memory bandwidth
of the GPU, the accesses from a single SIMD execution unit should
be coalesced, that is, access neighboring addresses. This has wide
implications across all algorithms, e.g., Path Tracing performance
benefits from work compaction, which results in the coherent pri-
mary rays being executed together in a compact block of warps.

3.1 Terminology

CUDA. As the paper discusses algorithm efficiencies that depend
on hardware specifics, let us briefly introduce some concepts we
will be referring to. We will introduce these concepts for NVIDIA’s
CUDA platform, however many are universal for any architecture
using a wide SIMD model (e.g., Xeon Phi or AMD Radeon).

The basic execution unit of CUDA is a thread, which executes
scalar code called a kernel. Each thread is allocated a certain num-
ber of registers and a certain amount of local memory. Local mem-
ory is used when the executed code requires more registers than are
available, and is allocated only for the currently executed threads.
Threads are grouped into warps of 32 threads. All threads in each
warp execute the same instruction. When threads in a warp need to
execute different branches of code, all threads have to execute all
the code; masks are used to make sure the results are used only for
threads that actually should have executed the code. This is called
code divergence, and has negative impact on efficiency proportional
to the size of code in the different branches. Global memory is
memory that can be seen by both the CPU and GPU. It contains all
inputs and outputs of a kernel call, including all intermediate data
between consecutive kernel calls. The GPU has an atomic counter
primitive, which we use for dealing with variable-sized inputs and
outputs (e.g. queues) and for compaction. We have not observed
any contention problems due to many threads simultaneously in-
crementing the same counter.

Images and frames. All of the presented algorithms are pro-
gressive in nature. For clarity, we distinguish between a frame, the
result of a single progressive iteration, and an image, the final re-
sult obtained by averaging multiple frames. Raw low-level perfor-
mance is compared on a single frame as a basic workload unit,
while higher level comparisons between different Monte Carlo es-
timators or completely different algorithms measure error between
images and a reference solution.

3.2 Testing Setup

We have implemented our algorithms on top of a publicly available
implementation of GPU ray casting [Karras et al. 2012]. We use
their acceleration structure as well as ray casting core and claim no
contributions in these areas. We support environment illumination,
point lights, directional lights, and area lights; our BSDFs include
reflection and refraction, diffuse textures, glossy lobes from Kele-
men, Ward, Ashikhmin-Shirley and Phong models, and Fresnel-
weighted combinations of diffuse and glossy components. We use
Tiny Encryption Algorithm to generate random numbers [Zafar
et al. 2010]. While not used in this survey, our design also supports
using low-discepancy sequences.

For our tests, we chose six scenes (Figure 1), representing vari-
ous configurations found in practical applications. All are rendered
in 720p resolution (1280x720), i.e., roughly 1 megapixel.

All our tests have been performed on a computer with Intel i7-
3770K @ 3.50GHz and 16GB RAM. We test on two different
NVIDIA GPUs of two architecture generations: Gainward Phan-
tom GeForce GTX 580 3GB (Fermi architecture [NVIDIA 2011]),
and Gainward GTX 680 4GB (Kepler architecture [NVIDIA
2012b]). We note that while the GTX 680 is a newer card and has
higher theoretical FLOPS, the architecture is significantly different
from GTX 580 and some of these differences are adversarial to our
algorithms. For example, the global memory access is no longer
cached by L1 cache but only in L2, and the clock rate has been
decreased (from 1566 MHz to 1072 MHz for our cards).

4. PATH TRACING

We first focus on Path Tracing [Kajiya 1986], one of the simplest
and most well-understood light transport simulation algorithms.
All implementations discussed represent different mappings of the
same algorithm onto the GPU. As tracing paths is an essential
building block for all algorithms introduced in the later sections,
good understanding and optimization of Path Tracing has signifi-
cant impact on their performance.

4.1 Algorithm Overview

Path Tracing generates path samples by simulating a random walk
through a scene. A path starts with a primary ray at the camera.
It is traced into the scene and on each surface hit the path is ex-
tended into a random direction. To increase efficiency and prevent
infinitely long paths, Russian roulette at each path vertex randomly
determines whether the path will be extended or terminated. The
survival probability is commonly based on surface reflectance (in
the range 0-1).

In the basic algorithm described by Kajiya [1986], a path con-
tributes to the frame only when it randomly hits a light. However,
this is inefficient and the algorithm is almost always used with next
event estimation (direct illumination). At each hitpoint, in addition
to path extension, a random light is sampled and, if visible from the
hitpoint, its contribution is accumulated. With this strategy, lights
of finite extent can be sampled in two ways: direct connection or
random hit; these two strategies are combined using Multiple Im-
portance Sampling (MIS) [Veach and Guibas 1995].

4.2 Survey of Existing GPU Implementations

All implementations introduced in this section use multiple kernels.
For clarity, we make this information part of the implementation
name, even though the original names did not include it.

Naive Path Tracing (multiple kernels). To motivate the discus-
sion on previous work, let us first consider the GPU implementation
of Naive Path Tracing (multiple kernels) (Algorithm NaivePTmk).
All paths used to obtain a frame (usually one path per pixel) are
processed in parallel. The implementation uses one thread for each
path, each path keeps its current state in global memory. In ker-
nel (a), all paths are initialized and their primary rays are generated.
While there is any active path, all active paths are extended (ker-
nel (b)) and their next event estimation is evaluated (kernel (c)).

It is important to note that because of SIMD, even inactive
threads (i.e. terminated paths) have to be executed as long as there
is at least one active thread in their warp. If Russian roulette termi-
nates 50% of active paths after each path extension, the utilization
of GPU will be 100% during the first extension, then drop to 50%
for the second extension, 25% for the third and so on, which is
clearly detrimental for the overall performance.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

4 • T. Davidovič et al.

(a) CoronaRoom (680k triangles): a living
room. The illumination comes mostly from sun
and sky, the lamp on the left provides little il-
lumination besides the spots on the wall. The
windows do not contain glass. Scene courtesy
of Ludvı́k Koutný (http://raw.bluefile.
cz/).

(b) CoronaWatch (918k triangles): the watch
has a bezel made of highly glossy metal, glass
with specular reflections and refractions, and a
black dial with diffuse numbers. Illumination
is provided by several large area lights. Scene
courtesy of Jerome White.

(c) LivingRoom (783k triangles): a room seen
in a mirror. The objects on the table are illu-
minated by two small lamps next to the mirror,
more lights are at the other side of the room.
The major feature of the scene is the caustics
on the table, reflected in the mirror. Scene cour-
tesy of Iliyan Georgiev.

(d) BiolitFull (166k triangles): an office scene
illuminated solely by area lights enclosed in
diffuse tube-like fixtures. Only the spots di-
rectly beneath and above the fixtures are di-
rectly illuminated, and they act as secondary
light sources. Scene courtesy of Jiřı́ “Biolit”
Friml (http://biolit.wordpress.com/).

(e) CrytekSponza (262k triangles): a modified
version of the classic Sponza. The camera is
in one of the arcades on the ground floor, the
only illumination is coming around the drapes
from a strongly illuminated atrium. Scene cour-
tesy of CryTEK (http://www.crytek.com/
cryengine/cryengine3/downloads).

(f) GrandCentral (1527k triangles): a large open
hall illuminated by an environment map and
over 900 point lights. Each of the 200 alcoves
near the ceiling contains one point light. The
remaining point lights are on the chandeliers in
the side halls. Scene courtesy of Cornell Uni-
versity Program of Computer Graphics (http:
//www.graphics.cornell.edu/).

Fig. 1: Our test scenes.

Path Tracing with Regeneration (multiple kernels). To ad-
dress this issue, Novák et al. [2010] propose Path Tracing with
Regeneration (multiple kernels) (Algorithm RegenerationPTmk).
This implementation decouples threads from paths. It uses a fixed
pool of threads. Each thread processes one path at a time. When a
thread has no assigned path or its path has terminated, we say it is
idle, otherwise it is active. All threads are idle at the start. While
there are any active threads and the path queue is not empty, all idle
threads are assigned a new path from the path queue (kernel (a)),
all paths are extended (kernel (b)), and their shadow ray is cast
(kernel (c)). This way, all threads on the GPU are active until the
queue becomes empty. Another advantage is that the path state is
kept only for currently processed paths, so the required memory
depends only on the number of threads, not the number of paths.

Stream Path Tracing with Regeneration (multiple kernels).
Van Antwerpen [2011a] introduces Stream Path Tracing with Re-
generation (multiple kernels) (Algorithm StreamingPTmk) to im-
prove upon the previous approach. The inefficiency comes from
code divergence in kernel (a) of Algorithm RegenerationPTmk.
When at least one thread in a warp needs to regenerate its path,
all threads in the warp have to execute the kernel, even though the
other threads do not need regeneration.

Van Antwerpen proposes to use stream compaction [Sengupta
et al. 2007] to separate the threads into active and idle threads (Fig-
ure 2). This way, at most one warp can have both active and idle
threads, essentially removing the code divergence. Another advan-
tage is that the coherent primary rays of the new paths will be as-

signed to threads that will be executed together, and it has been
shown that ray coherence has positive effect on ray casting perfor-
mance [Wald et al. 2001]. Similarly, the shadow rays for next event
estimation are compacted to reduce code divergence in kernel (c).

The compaction is a part of kernel (b), avoiding separate com-
paction kernel calls. It uses two sets of threads, one as input and the
other as output, and a global atomic counter, initially set to zero. For
each active thread in the input set, the counter is increased by one
and its old value is used as the thread’s target position in the output
set.

Wavefront Path Tracing. Laine et al. [2013] analyze Path Trac-
ing in the cases when BSDFs are expensive to evaluate (e.g., sur-
face characteristics described by complex noise functions). Such
situations can lead to extreme code divergence. Their solution sep-
arates BSDF evaluation (for both next event estimation and contin-
uation sampling) into a separate kernel call, sorts paths based on
their BSDF and executes the BSDF kernels in a coherent fashion.
However, this technique is only effective for these expensive BS-
DFs. For simpler BSDFs, such as those used in our test scenes, the
overhead of extra kernel calls and sorting greatly outweights any

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Fig. 2: Compaction: Active paths are compacted (green), while terminated
paths are discarded (red).

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

http://raw.bluefile.cz/
http://raw.bluefile.cz/
http://biolit.wordpress.com/
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.graphics.cornell.edu/
http://www.graphics.cornell.edu/

Light Transport Simulation on GPU • 5

(a) kernel path in all paths: // Generate
path.ray = setup primary ray for path

while Any path active:
(b) kernel path in all paths: // Extend path

if path.termianted: return
trace path.ray
if no hit:

accumulate background color
path.terminated = true

else:
accumulate surface emission
compute contribution of a random light
path.directIllum = (shadowRay, contrib)
if terminated with Russian roulette:

path.teminated = true
else: path.ray = sample BSDF

(c) kernel path in all paths: // Shadow test
if path.directIllum.contrib 6= 0:

if path.directIllum.shadowRay not blocked:
accumulate path.directIllum.contrib

Algorithm NaivePTmk: Naive Path Tracing (multiple ker-
nels): Naive GPU implementation of Path Tracing. All paths are
processed in parallel, each path is assigned to one thread. Ker-
nel (a) generates a primary ray for each path, and kernels (b)
and (c) perform path extension and shadow test, respectively,
until all paths have terminated.

gains from increased execution coherence and they recommend ex-
ecuting all such BSDFs in a single kernel call.

4.3 Proposed Alternative Implementations

All of the presented implementations launch multiple kernels, at
least one per path extension. This approach has several potential
bottlenecks: kernel launch overhead, path state stores and loads,
and the fact that the number of active paths has to be communicated
to the CPU. We investigate confining the whole algorithm into a
single kernel launch, which naturally removes all three potential
bottlenecks.

Naive Path Tracing (single kernel). We propose Naive Path
Tracing (single kernel) (Algorithm NaivePTsk) as a simpler al-
ternative to NaivePTmk. All three kernels and the while loop are
combined into a single large kernel, giving us code which is es-
sentially the same as a standard CPU path tracer. While, in theory,
all paths are still processed in parallel, the execution specifics of
CUDA impose some degree of serialization. Let us assume that the
number of paths to be traced is significantly larger than the number
of threads that can be processed by the GPU at once. In such a case,
the GPU schedules threads up to its capacity, these threads process
their paths, and when all threads within a scheduling unit (block in
CUDA) have terminated, new threads are scheduled, resulting in
path regeneration on a coarser level than individual threads.

This approach has several advantages. Path state does not have
to be explicitly stored and loaded, as it is kept in thread local mem-
ory all the time (which benefits from L1 cache even on the Ke-
pler architecture of the GTX 680 GPU [NVIDIA 2012a]). This also
means that there is no need to allocate any per-path memory on the

// All threads marked as idle
// All paths in pathQueue
while pathQueue not empty and any thread not idle:

(a) kernel thread in all threads: // Regenerate
if thread.state == idle:

thread.path = next path in queue
thread.ray = setup primary ray for thread.path
thread.state = active

(b) kernel thread in all threads: // Extend path
if thread.state == idle: return
trace thread.ray
if no hit:

accumulate background color
thread.state = idle

else:
accumulate surface emission
compute contribution of a random light
thread.directIllum = (shadowRay, contrib)
if terminated with Russian roulette:

thread.state = idle
else: thread.ray = sample BSDF

(c) kernel thread in all threads: // Shadow test
if thread.directIllum.contrib 6= 0:

if thread.directIllum.shadowRay not blocked:
accumulate thread.directIllum.contrib

Algorithm RegenerationPTmk: Path Tracing with Regenera-
tion (multiple kernels): This algorithm is almost identical to Al-
gorithm NaivePTmk, but it decouples threads from paths. Ker-
nel (a) now resides within the main while loop, and initializes
new path from the path queue for any thread that is idle. This
reduces the number of idle threads in each loop and increases
GPU utilization. Kernels (b) and (c) are almost identical, with
the difference that intermediate data are now stored with the
thread rather than with the path.

GPU, and the memory footprint is governed solely by the number
of concurrently executed threads. Only one kernel is launched, ef-
fectively removing any impact that kernel execution overhead has
on the overall performance, and when this kernel terminates we
know that all paths have terminated.

Path Tracing with Regeneration (single kernel). To ex-
plore per-thread regeneration in the single-kernel setting, we in-
troduce Path Tracing with Regeneration (single kernel) (Algo-
rithm RegenerationPTsk). We use persistent threads, where the
number of threads is set to the GPU capacity for concurrent threads.
Path (re)generation is again moved into the while loop, and threads
that do not have a path are assigned one from a path queue.

While code divergence in the regeneration step is still an issue,
compaction is no longer an option. The use of two sets of threads
would require a global barrier to swap the sets. However, such bar-
riers are currently not supported, so we did not explore this option
any further.

Using a single-kernel implementation has one potential draw-
back. Suppose that the separate kernels in a multi-kernel implemen-
tation have significantly different register requirements. The num-
ber of registers influences the number of threads a GPU can pro-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

6 • T. Davidovič et al.

// Two thread pools threadsIn, threadsOut
// All threadsOut marked as idle
// All paths in pathQueue
// atomics: pathCount = 0, directCount = 0

while pathQueue not empty and any path active:
(a) kernel thread in all threadsOut: // Regenerate

if thread index ≥ pathCount:
thread.path = next path in queue
thread.ray = setup primary ray for thread.path
thread.state = active

// Swap threadsIn ↔ threadsOut
// pathCount = 0, directCount = 0

(b) kernel thread in all threadsIn: // Extend path
if thread.state == idle: return
trace thread.ray
if no hit:

accumulate background color
thread.state = idle

else:
accumulate surface emission
compute contribution of a random light
if contrib 6= 0:

index = directCount++
threadsOut[index].directIllum =

(thread.pixel, shadowRay, contrib)
if not terminated with Russian roulette:

thread.ray = sample BSDF
index = pathCount++
threadsOut[index] = thread

(c) kernel thread in all threadsOut: // Shadow test
if thread index < directCount:

if thread.directIllum.shadowRay not blocked:
accumulate thread.directIllum.contrib to

thread.directIllum.pixel

Algorithm StreamingPTmk: Streaming Path Tracing with
Regeneration: Similar to Algorithm RegenerationPTmk, but
threads do not “own” their path for its entire lifetime. Instead,
paths that are still active are compacted to threads with low in-
dex. Atomic counter pathCount contains the current number of
active paths. Two sets of threads, threadsIn and threadsOut are
used for compaction. In kernel (a), first “pathCount” threads in
the threadsOut set contain active paths, and paths are regener-
ated for all the remaining threads. The two sets are swapped,
the “pathCount” counter is reset, and kernel (b) processes all
threads from threadsIn. Paths that are not terminated are com-
pacted to the threadsOut set. Direct illumination with non-zero
contribution is handled in the same way. Note that a thread can
now handle path extension and shadow test for different pixels.

cess concurrently, which in turn influences the overall performance.
The first kernel would have three times as many active threads as
the second kernel. When such kernels are combined into a single
kernel, the GPU cannot use more threads for the more lightweight
steps of the code and is underutilized in those steps.

We acknowledge that both are straightforward implementations
of Path Tracing, and none, in itself, is a major contribution. How-

kernel path in all paths:
(a) path.ray = setup primary ray for path // Generate

while path.terminated == false:
trace path.ray
if no hit:

accumulate background color
path.terminated = true

else:
accumulate surface emission
compute contribution of a random light

(c) if contribution 6= 0: // Shadow test
if shadowRay not blocked:

accumulate contribution

(b) if terminated with Russian roulette:
// Ext. path

path.teminated = true
else: path.ray = sample BSDF

Algorithm NaivePTsk: Naive Path Tracing (single kernel):
This is a single-kernel version of Algorithm NaivePTmk. All
path states are kept in local memory and only for threads cur-
rently executed on the GPU, reducing the required memory
footprint. The code is greatly simplified and essentially iden-
tical to a standard CPU implementation.

// All threads marked as idle
// All paths in pathQueue
kernel thread in all threads:

while pathQueue not empty:
(a) if thread is idle: // Regenerate

thread.path = next path in queue
thread.ray = setup primary ray for thread.path
thread.state = active

trace path.ray
if no hit:

accumulate background color
thread.state = idle

else:
accumulate surface emission
compute contribution of a random light

(c) if contribution 6= 0: // Shadow test
if shadowRay not blocked:

accumulate contribution

(b) if terminated with Russian roulette:
// Ext. path

thread.state = idle
else: thread.ray = sample BSDF

Algorithm RegenerationPTsk: Path Tracing with Regenera-
tion (single kernel): This is a single-kernel version of Algo-
rithm RegenerationPTmk, utilizing persistent threads. When a
thread has no path assigned, it is given a new path from the
queue, and processes the path until its termination.

ever, comparing these simpler implementations with the the ones

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

Light Transport Simulation on GPU • 7

Algorithm RegenerationPTmk StreamingPTmk
GPU GTX 580 GTX 680 GTX 580 GTX 680
Kernels 1 2 3 1 2 3 1 2 3 1 2 3

CoronaRoom 23.3 36.4 42.7 20.8 31.3 29.5 50.0 55.9 52.4 48.9 51.4 40.6
CoronaWatch 52.3 54.8 55.9 35.8 34.5 34.0 71.9 78.1 68.3 51.6 49.5 42.6
LivingRoom 30.4 39.1 43.9 27.6 34.1 33.5 55.0 59.6 55.7 56.0 57.1 49.0
BiolitFull 27.9 41.0 49.5 24.5 35.0 33.5 60.5 68.9 66.0 61.0 65.0 53.0
CrytekSponza 36.8 58.8 73.4 31.9 48.3 44.6 95.1 95.4 88.2 74.5 74.8 52.8
GrandCentral 20.1 33.0 37.9 19.2 29.3 28.1 43.4 49.1 46.4 44.0 47.3 38.6

Units millions of rays per second (more is better)

Table I. : Performance, in millions of rays per second, of RegenerationPTmk, i.e. Path Tracing with Regeneration (multiple kernels), and
StreamingPTmk, i.e. Streaming Path Tracing with Regeneration (multiple kernels), in different kernel configurations.

introduced in previous work is beneficial and will lend us useful
insights.

4.4 Results and Discussion

To configure the implementations, i.e., to set the required number
of registers and the size of the thread pool used by the implemen-
tations with regeneration, we have measured all possible configu-
rations and used the one that resulted in the highest performance.
The optimal number of registers greatly varies between both the in-
dividual implementations and the GPU architectures with the dif-
ference between the best and the worst in the the tested range (32 –
63 registers) being up to 2×. As a result, we cannot give a summary
advice and only recommend always conducting performance tests
for each reimplementation.

Memory requirements. All implementations require only a few
megabytes of local memory for the active thread variables that do
not fit into registers. Multi-kernel implementations require addi-
tional global memory to store the input of individual kernels. This
translates to less than 100 MB per frame in all methods.

Kernel configurations. We tried several configurations with dif-
ferent separation of tasks into kernels. First, we tried to separate the
ray casting part of kernel (b) into a separate kernel, to better utilize
dedicated ray casting kernels from [Aila et al. 2012]. This how-
ever dropped the performance to less than 40% on both GTX 580
and GTX 680, compared to the three-kernel variant. The bottleneck
was in the increased loading and storing of path data between ker-
nel runs, suggesting that further increases in the number of kernels
would not bring any benefits.

Going the opposite way, we reduced the number of kernels to
two, by making the Regeneration kernel (a) part of the Extend path
kernel (b). This saves one set of loads and stores, at the cost of lower
GPU utilization in the regeneration step. Importantly, the effectivity
of compaction is preserved.

We also tried reducing to just a single kernel, by folding in the
Shadow test kernel (c). Here we save another load and store, this
time at the cost of losing the benefits of compaction. Note that this
is still different from RegenerationPTsk, which runs only one ker-
nel for each frame, while RegenerationPTmk with one kernel runs
this kernel for each path vertex.

Table I shows the performance, in millions of rays per sec-
ond, of RegenerationPTmk and StreamingPTmk with one, two,
and three kernels, on both GTX 580 and GTX 680. Starting with
StreamingPTmk, it is quite clear that the two-kernel configura-
tion is the best, having superior performance in almost all scenes.
The three-kernel configuration on GTX 680 performs significantly
worse than the one- and two-kernel configurations, mainly due

to changes in memory system and caching of global memory ac-
cesses.

The situation with RegenerationPTmk is less clear. On GTX 580,
the three-kernel variant clearly outperforms the other two config-
urations. However, this changes for GTX 680, where the lower
number of loads and stores into global memory results in a
slight advantage of the two-kernel configuration. One of the
reasons for the difference between two and three kernels in
StreamingPTmk and RegenerationPTmk is that StreamingPTmk
performs non-coalesced accesses in the compaction phase, mak-
ing it more sensitive to the missing L1 cache. For the follow-
ing performance analysis, we use the optimal RegenerationPTmk
and StreamingPTmk kernel configuration for their respective GPU
(that is, we use three-kernel RegenerationPTmk for GTX 580,
two-kernel RegenerationPTmk for GTX 680, and two-kernel
StreamingPTmk for both).

Performance tests. For each of the introduced implementations
we measured performance (in rays per second) for different num-
bers of paths per frame. We tested from 330 thousand to 100 million
paths per frame, which covers a wide range of desired applications,
from 1 path per pixel at resolution of 640 × 480 to 100 paths per
pixel at resolution of 1280 × 720. The individual per-scene mea-
surements, to be found in the supplemental material, have been ag-
gregated in Figure 3.

Let us first look at Figure 3a (GTX 580). Here, StreamingPTmk,
is the clear winner across all path counts. Its base performance
at 106 paths per frame is increased by another 15% for 107

paths, making almost it 50% faster than RegenerationPTsk and

(a) GTX 580 (b) GTX 680

0.33 1 10 100
106 paths per frame

30

40

50

60

70

10
6

 ra
ys

 p
er

 se
co

nd

0.33 1 10 100
106 paths per frame

30

40

50

60

70

NaivePTmk
StreamingPTmk
RegenerationPTsk (ours)

RegenerationPTmk
NaivePTsk (ours)

Fig. 3: Path tracing performance. Performance in rays per second with in-
creasing number of paths per frame, averaged across all six test scenes.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

8 • T. Davidovič et al.

RegenerationPTmk, which compete for being the second fastest.
The comparison of RegenerationPTsk and RegenerationPTmk, re-
spectively, shows that our RegenerationPTsk is less sensitive to the
size of workload, keeping stable performance from approximately
106 paths per frame. RegenerationPTmk can still outperform the
single-kernel implementation, but requires 107 paths or more, and
even then the difference is rather marginal. Both naive implemen-
tations, NaivePTmk and NaivePTsk, exhibit low performance. As
NaivePTmk requires allocated memory for each path of the frame,
it could not be tested in the full range. We note that for 2 ·106 paths
per frame NaivePTsk is faster than RegenerationPTmk, witnessing
of the overhead of global memory stores and loads.

For GTX 680 (Figure 3b) the story changes. Both
StreamingPTmk and our RegenerationPTsk perform roughly
the same, with RegenerationPTsk having more stable and
StreamingPTmk slightly higher peak performance. This is caused
by the difference in the memory subsystem on the Kepler
architecture of the GTX 680 GPU. While StreamingPTmk ben-
efits from compaction and slightly better GPU utilization, our
RegenerationPTsk has the benefit of storing intermediate data in
the L1-cached local memory instead of global memory. For similar
reasons NaivePTsk is faster than RegenerationPTmk in all cases.

4.5 Conclusion

Lower numbers of larger kernels benefit both Fermi (GTX 580) and
Kepler (GTX 680) architectures. The disadvantage of more loads
and stores outweighs gains from the optimal number of concur-
rently executed threads for a given step. The relative performance
of the measured kernel configurations of RegenerationPTmk dif-
fers between the architectures, with three-kernel configuration be-
ing the fastest on GTX 580, and two-kernel (joined Regeneration
and Extend path kernels) on GTX 680. For StreamingPTmk, the
two-kernel configuration is the fastest on both architectures.

With regard to the performance on GTX 680, our Path Trac-
ing with Regeneration (single kernel) (RegenerationPTsk) and
Streaming Path Tracing with Regeneration (multiple kernels)
(StreamingPTmk) have similar performance, but our implementa-
tion is faster for low number of paths per frame, as well as sim-
pler to implement. This changes on the older GTX 580, where
StreamingPTmk is the optimal implementation for all but the low-
est number of paths per frame, with its peak performance being
over 50% faster than our RegenerationPTsk, which competes with
its multi-kernel variant for the second place.

5. BIDIRECTIONAL PATH TRACING

While Path Tracing is sufficient for simpler open scenes, scenes
with more complex indirect illumination (e.g., BiolitFull) greatly
benefit from more advanced Bidirectional Path Tracing (BPT)
[Lafortune and Willems 1993; Veach and Guibas 1994]. The al-
gorithm itself is more complicated than Path Tracing and as such
opens opportunity for a different type of optimization. In Path Trac-
ing we focused only on the very low-level mapping of a single al-
gorithm onto GPU. Here, on the other hand, we examine options
of modifying the underlying Monte Carlo estimator (and thus the
algorithm itself) so it lends itself better to a GPU implementation.

5.1 Algorithm Overview

Bidirectional Path Tracing, as originally described by Lafortune
and Willems [1993] and Veach and Guibas [1994], generates, for
each image sample, two separate sub-paths: one starting at the cam-
era, and one at a light (Fig. 4). The first vertex of each sub-path is

located directly on the camera or on a light, respectively. The sub-
paths are extended, by adding one vertex at a time, in the same
way as in Path Tracing. After the two sub-paths have been gener-
ated, each vertex of the camera sub-path is connected to each ver-
tex of the light sub-path, forming full paths (connecting camera to
light). We can view this as a generalization of Path Tracing with
next event estimation, in which the light sub-path had always just
a single vertex directly on the light source. As there are multiple
ways to construct each full path from light to camera, the paths are
weighted using Multiple Importance Sampling (MIS) [Veach and
Guibas 1995].

The original formulation of MIS by Veach and Guibas [1995]
assumes that when two vertices are connected, all vertices on both
sub-paths preceding the connected vertices have to be accessed to
gather required data to compute the appropriate MIS weight. Re-
cursive Multiple Importance Sampling (MIS), introduced in [van
Antwerpen 2011b; Georgiev 2012], removes this requirement and
allows computing the MIS weight from information stored only in
the vertices being connected. This is especially important for GPU
implementation, where random memory accesses should be lim-
ited, and all presented implementations use this method.

Connecting each camera sub-path vertex to all the vertices on the
light sub-path introduces two new GPU implementation issues that
have to be addressed. First, where PT has a fixed memory footprint
per path, the memory requirements in BPT depend on the length of
the light sub-path, as the whole light sub-path has to be traced and
stored before the camera sub-path can be started. While the average
length of a path is not high, this storage has to be multiplied by the
number of parallel threads. Second, unlike PT, the work required
per camera sub-path vertex depends on light sub-path length and
can be vastly different for different camera sub-paths, which makes
efficient mapping to GPU more complicated.

5.2 Survey of Existing GPU Implementations

Bidirectional Path Tracing with Regeneration (Regenera-
tionBPT). The first fully GPU-based implementation was intro-
duced in [Novák et al. 2010]. It uses two separate passes. In the first
pass, all light sub-paths are generated and stored in the GPU mem-
ory. In the second pass, camera sub-paths are created and traced as
in Path Tracing with Regeneration, except that each vertex is also
connected to all vertices of a randomly chosen light sub-path. To
address the memory issue, the authors limit light sub-path length
to five vertices. Limiting maximum light sub-path length also re-
quires more complex logic for computing MIS weights and the au-
thors therefore did not use MIS, which has a negative impact on the
final image quality.

camera subpath

light subpath

Fig. 4: The standard Bidirectional Path Tracing sample consists of a camera
sub-path (green) and a light sub-path (orange), where each vertex on the
camera sub-path is connected to each vertex on the light sub-path (dashed).

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

Light Transport Simulation on GPU • 9

while pathQueue not empty and any path active:
foreach thread in all threads:

if thread is idle:
thread.camera = setup camera path
thread.light = setup light path

CompletedPaths = 0
while CompletedPaths < 60%:

foreach thread in all threads:
if thread.light not terminated:

Extend thread.light
thread.lightVertices += light vertex

if thread.camera not terminated:
Extend thread.camera
thread.cameraVertices += camera vertex

if thread.light and thread.camera terminated:
CompletedPaths++

foreach thread in all terminated threads:
Generate all lightVertices and cameraVertices pairs
foreach vertex pair in thread:

shadowRay = pair.light to pair.camera
if shadowRay not occluded:

accumulate contribution

Algorithm StreamingBPT: Streaming Bidirectional Path
Tracing with Regeneration: All threads are initialized with a
camera and light sub-path. Then a two stage algorithm is ex-
ecuted, where all sub-paths are extended in a similar way to
Algorithm StreamingPTmk (details left out for brevity). When
more than 60% threads have both sub-paths terminated, all pairs
of vertices for each thread are generated (implicitly), and all
such pairs have their visibility evaluated and contributions ac-
cumulated. All terminated threads are then regenerated, until
there are no paths left in the queue.

Multi-path Bidirectional Path Tracing (MultiBPT). Both the
memory consumption and the workload issues are solved by the
algorithm introduced by van Antwerpen [2011b], originally under
the name Streaming Bidirectional Path Tracing, which we changed
to avoid confusion with a later introduced algorithm of the same
name by the same author.

Instead of storing the whole light sub-path, the algorithm traces
one complete camera sub-path for each light sub-path vertex, which
requires storing only one light and one camera sub-path vertex.
This naturally solves both the storage and the uneven load problem,
at the cost of more camera paths; the algorithm essentially spends
more time on “camera-side” effects (e.g., anti-aliasing) than on
“light-side” effects (e.g., caustics). As tracing of both sub-paths is
interleaved, an efficient implementation requires reusing the same
code for both camera and light sub-paths, making the implementa-
tion quite involved.

Combinatorial Bidirectional Path-Tracing. Pajot et al. [2011]
present a hybrid two-stage implementation of BPT. All sub-paths
are generated on the CPU, and the GPU performs only connections
between all camera and all light sub-path vertices. Unfortunately,
this way some paths (e.g., caustic paths) can only be handled by the
CPU. As this is not a pure GPU implementation, we are including
it only for completeness and it does not appear in our comparison.

vertexCount = 0 // Preparation phase
foreach path in 10k light paths:

while path not terminated:
trace path.ray if no hit: return
vertexCount += 1
path = extend path

averageLength = vertexCount/10 k
LVCache = reserve |light paths| · averageLength · 1.1
connections = max(1, daverageLengthe)
vertexCount = 0 // Light trace
foreach path in light paths:

while path not terminated:
trace path.ray
if no hit: return
LVCache[vertexCount++] = path.vertex
path = extend path

foreach path in camera paths: // Camera trace
while path not terminated:

trace path.ray
if no hit: return
repeat connections times:

path connects to LVCache[random]
path = extend path

Algorithm LVC-BPT: Light Vertex Cache BPT (proposed al-
gorithm): In LVC-BPT we first, once for each scene, estimate
average light path length (Preparation phase), reserve room in
light vertex cache for the estimated total number of light sub-
path vertices, plus a 10% safety margin, and estimate the num-
ber of connections for each camera sub-path vertex. We then ex-
ecute two main stages of the algorithm. First, we trace all light
sub-paths, storing the light sub-path vertices in the cache. Sec-
ond we trace all camera sub-paths, connecting to the required
number of random vertices in the cache.

Streaming Bidirectional Path Tracing with Regeneration
(StreamingBPT). In contrast to his [2011b] algorithm, van
Antwerpen [2011a] presents a more traditional BPT (Algo-
rithm StreamingBPT). The approach is a two stage algorithm, using
a pool of threads, with one thread processing one camera and light
sub-path pair. Initially, all threads have their sub-paths generated.
Both sub-paths are then extended, with their vertices stored with
the thread. When more than 60% of the threads have both their sub-
paths terminated, the algorithm enters the second stage, in which all
pairs of light and camera sub-path vertices within each thread are
tested for visibility and their contributions are accumulated to the
image. The pairs are formed implicitly, and tested with one thread
for each pair, which solves the issue with uneven work per vertex.
After that, all terminated threads have their sub-paths regenerated
and the whole algorithm is repeated until there are no more paths
to be traced. The required storage size is determined by the size of
the thread pool and the user-defined maximum path length.

5.3 Proposed Alternative: Light Vertex Cache BPT

To remove the requirement for user-defined maximum path length
while keeping the implementation as simple as possible, we in-
troduce Light Vertex Cache Bidirectional Path Tracing (Algo-
rithm LVC-BPT). The key idea is that instead of connecting each
camera sub-path vertex to all vertices from a given light sub-path,

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

10 • T. Davidovič et al.

Algorithm Vertex Storage Path extension Shadow test Other On our configuration

StreamingBPT 2 · S · L·B 4 · S · 64B S · 44B S · 100B 1.1 GB
MultiBPT S · 100B 2 · S · 64B S · 44B — 108MB
NaiveBPT L ·E · 100B — — — 8–10 MB

LVC-BPTsk (ours) P ·AL · 100B — — — 16–164 MB
LVC-BPTmk (ours) P ·AL · 100B 2 · S · 64B S · (V + 1) · 44B — 148–316 MB

S – thread pool size; E – number of concurrently executed threads
L – maximum path length; P – paths per frame; AL – average light sub-path length

Table II. : Summary of BPT memory requirements: We present the memory requirement of each component of each algorithm as a function
of several parameters. We also give the total amount of memory the algorithm used on our configuration.

the vertex is connected to a given number of uniformly randomly
chosen vertices across all light sub-paths. It can also be seen as first
choosing a random light sub-path (similar to RegenerationBPT)
with probability proportional to its number of vertices, and then
choosing a uniformly random vertex on the path, which arrives at
the same uniform probability for all light sub-path vertices.

This, along with the recursive MIS weight computation, enables
us to store all vertices in a single global Light Vertex Cache (LVC),
without storing any information regarding the light sub-path they
originate from. As all vertices are stored in a common cache, we
do not need to know the maximum path length. Instead, we only
need the average path length, to allocate a large enough cache. We
estimate this by tracing a small number (ten thousand) of light sub-
paths, only counting the number of vertices they would store. This
kernel takes less than 1 ms on both tested GPUs, and has to be per-
formed only once for each scene. Using the average path length, we
compute the expected number of light sub-path vertices (adding a
10% safety margin) and reserve the required memory for the cache.
In theory, it is possible that the algorithm will generate more light
vertices than the LVC capacity, in which case we would discard the
extra vertices (causing bias). However, this has not happened in any
of our experiments.

The implementation of LVC-BPT is fairly straightforward and
can be based on any of the algorithms introduced in Section 4.
We present results based on Path Tracing with Regeneration (sin-
gle kernel) (as LVC-BPTsk) and on Streaming Path Tracing with
Regeneration (multiple kernels) (as LVC-BPTmk).

As the second pass of LVC-BPT accesses the cache in a ran-
dom pattern, we load the vertices through texture units in Array of
Structures (AoS) layout for optimal performance.

5.4 Results and Discussion

We test our implementations of the following five algorithms:

—StreamingBPT [van Antwerpen 2011a] represents the current
state-of-the-art algorithm. To confirm that our performance is on
par with the paper, we measured the number of samples (i.e.,
camera and light sub-path pairs) on the same scene and GPU
as in the original paper and our implementation (8.66 million
samples per second) was roughly twice as fast as reported in the
original paper (3.64 million samples per second).

—MultiBPT [van Antwerpen 2011b]. We use a straightforward ex-
tension of the approach and complement it with a dual algorithm,
tracing one light sub-path for each camera sub-path vertex. Dur-
ing the progressive rendering of the image, we alternate between
the two algorithms, balancing the number of camera and light
sub-paths.

—NaiveBPT is a straightforward port of CPU code to GPU, to
compare the relative gain of the more advanced implementations.

The implementation consists of two while loops of NaivePTsk
(Alg. NaivePTsk) within a single kernel. Persistent threads are
used for better control of memory requirements (see below).

—LVC-BPT is our new algorithm. Its two versions use either Path
Tracing with Regeneration (for LVC-BPTsk) or Streaming Path
Tracing with Regeneration (for LVC-BPTmk) as the basic algo-
rithm for tracing camera and light sub-paths.

Memory requirements. Table II gives a summary of memory
used by each of the algorithms as a function of several parameters.
The state-of-the-art StreamingBPT uses the most memory. It uses
two sets of threads and requires large storage for all light sub-path
vertices, using up 1.1 GB. MultiBPT stores only one light sub-path
vertex per thread, does not use two sets of threads for each sub-path,
lowering the total memory requirements to 108 MB. NaiveBPT per-
forms all its computation within a single kernel launch, so it does
not require any extra memory for path extension and shadow test
kernels, lowering memory requirements to only 8–10 MB. LVC-
BPTsk also stores only light vertices, but the memory is given by
the average light sub-path length and the total number of light sub-
paths per frame. LVC-BPTmk again adds requirement for the path
extension and the shadow test kernel stores.

Performance tests. In Bidirectional Path Tracing, the number
of rays per second does not provide a good comparison between the
algorithms. Instead, we measure performance as the time required
to achieve a given image quality in terms of Root Mean Square
Error (RMSE) with the respect to the reference solution (computed
by NaiveBPT in 10 hours).

We performed measurements on both GTX 580 and GTX 680
with 106 samples per frame, and chose our target quality as RMSE
achieved by the state-of-the-art StreamingBPT in 10 minutes on
GTX 580. Table III shows the relative speedup against Stream-
ingBPT on GTX 580. The average result is a simple average of the
speedups for each given algorithm. Note that we do not use Livin-
gRoom in this comparison, as the RMSE is dominated by the miss-
ing reflected caustics that none of the BPT methods can reasonably
capture (Figure 5).

When we look at the results on GTX 580, we notice a surpris-
ingly high performance of NaiveBPT. On GrandCentral it outper-

Fig. 5: Reflected caustic dominates the RMSE of LivingRoom scene. Left:
Inlay from reference image. Right: Inlay from LVC-BPTsk after 15 min.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

Light Transport Simulation on GPU • 11

GeForce GTX 580
StreamingBPT NaiveBPT MultiBPT LVC-BPTsk LVC-BPTmk

CoronaRoom 1.00× 0.91× 0.81× 1.15× 1.21×
CoronaWatch 1.00× 1.41× 0.93× 1.41× 1.15×
BiolitFull 1.00× 0.52× 0.57× 1.53× 1.81×
CrytekSponza 1.00× 1.07× 0.93× 1.35× 1.29×
GrandCentral 1.00× 0.70× 0.70× 1.29× 1.34×
Average 1.00× 0.85× 0.77× 1.33× 1.33×

GeForce GTX 680
StreamingBPT NaiveBPT MultiBPT LVC-BPTsk LVC-BPTmk

CoronaRoom 0.86× 0.72× 0.69× 1.24× 1.19×
CoronaWatch 0.74× 1.17× 0.80× 1.32× 1.07×
BiolitFull 0.89× 0.42× 0.58× 1.73× 1.92×
CrytekSponza 0.84× 0.92× 0.92× 1.55× 1.12×
GrandCentral 0.97× 0.55× 0.68× 1.39× 1.49×
Average 0.85× 0.68× 0.71× 1.38× 1.27×

Table III. : Relative BPT speed up: Speedup of different BPT algorithms, in terms of time to a given quality, relative to StreamingBPT on
GTX 580. The target quality is chosen as RMSE achieved by StreamingBPT in 10 minutes on GTX 580.

forms the StreamingBPT, and on CoronaWatch it is even tied for
the fastest algorithm with our LVC-BPTsk. In these scenes, the
work for each sample is highly uniform, which mitigates the in-
efficiencies of the naive approach. However, on average, the naive
approach is about 15% slower than StreamingBPT. MultiBPT is the
slowest of the algorithms, mainly due to its more complex imple-
mentation and imperfect interleaving of camera and light sub-path
tracing. Both LVC implementations are faster than StreamingBPT
on all scenes, with average speedup of 33%. A major factor is that,
unlike StreamingBPT, LVC-BPT stores only light vertices, which
comprise less than 40% of all vertices stored by StreamingBPT.
The algorithm also benefits from a more straightforward control
flow.

The results on GTX 680 are consistent with our findings from
Section 4. We again see a drop in the absolute performance of
multi-kernel implementations, significantly influenced by the lack
of L1 cache for global memory accesses. Our LVC-BPTsk is the
only algorithm that actually shows increase in performance on
GTX 680; all other algorithms, including our LVC-BPTmk, have
decreased performance.

With 107 samples per frame, the findings are again consistent
with the findings from Section 4, and multi-kernel implementa-
tions (StreamingBPT, MultiBPT, and LVC-BPTmk) benefit from
the increased number of samples more than single-kernel variants
(NaiveBPT and LVC-BPTsk). The full results can be found in the
supplemental material.

5.5 Conclusions

In this section we surveyed several Bidirectional Path Tracing al-
gorithms. While NaiveBPT and StreamingBPT implement the stan-
dard BPT Monte Carlo estimator, only limiting the maximum path
length, other approaches modify the estimator to achieve better
GPU mapping. Our proposed LVC-BPT significantly simplifies the
implementation by decoupling light and camera sub-paths.

We compared the state-of-the-art StreamingBPT with NaiveBPT,
MultiBPT, and our LVC-BPT. As LVC-BPT can utilize almost any
Path Tracing implementation, we measured two versions: LVC-
BPTsk, based on Path Tracing with Regeneration (single kernel),

(a) Progressive PM (b) Stochastic PPM (c) PBPM

Fig. 6: The original Progressive Photon Mapping (left) performs density
estimation on the first camera sub-path vertex. Stochastic Progressive Pho-
ton Mapping (center) extends camera sub-path using glossy BSDF compo-
nents and performs density estimation on both vertices, using only diffuse
BSDF components on the first one. Progressive Bidirectional Photon map-
ping (right) traces full camera sub-path, performs density estimation on all
its vertices, and weights them using Multiple Importance Sampling.

and LVC-BPTmk, based on Stream Path Tracing with Regenera-
tion (multiple kernels). We conducted a performance test, measur-
ing time required to achieve a given image quality. The difference
between LVC-BPTsk and LVC-BPTmk closely follows differences
between their respective Path Tracing algorithms. The single-kernel
implementation is simpler and more suited for GTX 680 and low
numbers of samples per frame, while the multi-kernel implementa-
tion is slightly more involved and is more suited for GTX 580 and
larger numbers of samples per frame. The simplicity of the LVC-
BPT implementation allows it to outperform the other algorithms
by 30-60% on all tested configurations.

6. PHOTON MAPPING-BASED APPROACHES

While Path Tracing and Bidirectional Path Tracing are an excel-
lent choice for a wide range of scenes, some effects, e.g., reflected
caustics in Figure 5, remain notoriously hard to capture. In this sec-
tion we focus on a family of methods based on Photon Mapping
(PM) [Jensen 2001] which can handle such effects.

Photon Mapping based approaches are similar to BPT in that
they require both light and camera sub-paths. However, unlike

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

12 • T. Davidovič et al.

(a) Progressive PM (b) Stochastic PPM (c) PBPM

(d) Progressive PM (e) Stochastic PPM (f) PBPM

Fig. 7: PPM, SPPM and PBPM on glossy surfaces. Given a Cornell Box
with a highly glossy floor (top row), Progressive Photon Mapping (a) pro-
duces a noisy image, because only very few photons have a significant con-
tribution. Stochastic Progressive Photon Mapping (b) instead extends the
camera sub-path in the direction of the glossy lobe and performs density
estimation on the diffuse wall, giving a much smoother result. However, for
only slightly glossy surfaces (bottom row) it is not beneficial to follow the
glossy lobe and PPM (d) produces less noisy result than SPPM (e). Progres-
sive Bidirectional Photon Mapping (c, f) uses multiple importance sampling
to weight both techniques to produce a noise-free image in both cases.

BPT, camera sub-path vertices connect to all light sub-path vertices
within a certain radius, an operation that requires a suitable acceler-
ation structure. These acceleration structures have to be rebuilt for
every frame and are the focus of this section.

Unlike in previous sections, where the differences between the
compared variants consisted in mapping to the GPU or a slight
algorithmic modification, in this section we examine acceleration
structures with very different asymptotic complexities of both con-
struction and queries. To compare the structures, we implemented
three different algorithms based on Progressive Photon Mapping
and we compare the results achieved with different data structures
in all three of them.

All Photon Mapping based approaches share the following two-
pass algorithm. In the first pass, light sub-paths are traced into the
scene, on each interaction with the scene a photon is stored, and
the sub-paths are extended in the same way as in BPT. The pho-
tons store only their position, incoming direction, and energy; they
do not require the BSDF. In the second pass, camera sub-paths are
traced and density estimation is performed at their vertices. Each
photon within some radius r of the hitpoint is treated as if it ar-
rived exactly at the hitpoint, that is, incoming direction and energy
of the photon is used to evaluate the BSDF at the hitpoint. Contri-
butions from all such photons are accumulated and divided by πr2.
The choice of the radius depends on the specific algorithm, with
the common choices being a fixed radius (range query), and radius
such that k nearest photons contribute (k-nearest neighbor, k-NN,
query). Which vertices of the camera sub-paths perform the density
estimation also depends on the specific algorithm.

Progressive Photon Mapping (PPM). Progressive Photon
Mapping by Hachisuka and Jensen [2008] uses range queries to
perform density estimation on the first non-specular vertex of each
camera sub-path (see Figure 6a) and, using per-vertex statistics
such as number of accumulated photons, reduces the query radius
in a way that the whole algorithm is consistent.

Stochastic Progressive Photon Mapping (SPPM). In their fol-
low up paper Hachisuka et al. [2009] show that the per-vertex statis-
tics can be reused for all vertices originating from the same pixel.
This can be used to improve performance on glossy surfaces, as
standard density estimation on glossy surfaces produces noisy re-
sults (Figure 7a). SPPM instead uses only the diffuse component of
the BSDF on the first camera sub-path vertex, extends the sub-path
using glossy components and performs another density estimation
on the second vertex (see Figure 6b). This often leads to less noisy
results (Figure 7b).

Progressive Bidirectional Photon Mapping (PBPM). While
highly glossy surfaces greatly benefit from SPPM (Figure 7, top
row), always extending the camera sub-path can be adversarial
when the glossy lobe is wide (Figure 7, bottom row). In that case,
PPM is actually better. To address this issue, Vorba [2011] intro-
duces Progressive Bidirectional Photon Mapping (PBPM), where
the camera sub-path is extended in the same way as in Path Trac-
ing, and density estimation is performed on each of its vertices.
Multiple Importance Sampling is then used to properly weight the
individual contributions, leading to a smooth result on both high
and low gloss surfaces (Figure 7c and 7f).

Knaus and Zwicker [2011] show that the per-vertex (or per-pixel)
statistics are not required and the radius can be reduced using a
global scaling factor. In all our implementations we use this ap-
proach rather than the original reduction scheme.

All three algorithms share common elements, many of which we
have already addressed. The sole new challenge is an efficient im-
plementation of density estimation using a range query, accelerated
through the use of a spatial data structure. Since both photon gen-
eration and queries are done on the GPU, it is essential that the data
structure construction is also handled by the GPU, to limit CPU-
GPU transfers. In the next part we focus on this aspect.

6.1 Survey of Existing GPU Implementations of
Photon Map Search Structures

kD-tree. Zhou et al. [2008] describe an algorithm for GPU con-
struction of kD-trees, the acceleration structure used in the original
Photon Mapping. The algorithm first sorts photons by their coor-
dinates and then builds the kD-tree incrementally, by levels. For
each level of the kD-tree three prefix sums and three scatter/gather
operations are executed. This build process is significantly more in-
volved than the build process of Hash Grids, introduced later in this
section, and our experiments show that even the range queries are
slower (Table V).

Full Hash Grid. While kD-trees excel at queries with an un-
known or highly varying radius, their build as well as traversal is
quite costly. The original Progressive Photon Mapping [Hachisuka
et al. 2008] implementation instead uses Hash Grids. We use the
name Full Hash Grid to distinguish it from Stochastic Hash Grid
introduced later. Here the whole scene is partitioned into a grid
with cell sizes roughly equal to the diameter of expected queries
and the photons are stored in these cells. As representing each cell
in memory is unnecessary, a 1D array of cells, typically equal to
the number of light sub-paths, is used instead. A photon’s position
in this array is given by a hash of its coordinates in the full grid.
A good hash function should be used (we use Jenkins’ hash [Jenk-
ins 1997]). The construction of the structure is simple and easy to
parallelize (see Algorithm 1). When querying the grid for photons
within radius r, we iterate through all cells that are within this ra-
dius, collect all the photons, and discard those that are farther than
r. When the radius is smaller than half of the cell edge length, only
8 cells have to be searched.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

Light Transport Simulation on GPU • 13

// Each cell has 1 atomic counter
// storage - array of photon indices
foreach cell:

cell.counter = 0
foreach photon:

cell[hash(photon)].counter += 1
Exclusive prefix sum over cell.counter
foreach photon:

position = cell[hash(photon)].counter++
storage[position] = photon index

Algorithm 1: Building hash grid: Each cell has a single atomic
counter, that is initially set to 0. Each photon increments this
atomic counter, to determine how many photons belong to each
cell. Exclusive prefix sum is performed over these counters, giv-
ing a start index on which photon indices belonging to each
cell should be stored. In the final pass each photon increments
the counter and fetches its old value. The photon’s index is
stored at the position given by this value in the storage array.
The range of photons in the storage array that belong to a cell
with index cidx is given by cell[cidx-1].counter (inclusive) to
cell[cidx].counter (exclusive), with cell[-1].counter = 0.

This approach has two drawbacks. When the radius is signifi-
cantly smaller than the size of a cell, the cell can contain many pho-
tons that will be outside the query radius and discarded. The second
problem stems from hash collisions, when multiple full cells are
mapped into a single hash cell. As a result the cell can, once again,
contain many photons that will be outside the query range.

Stochastic Hash Grid. Hachisuka and Jensen [2010] identify
two GPU-specific problems with the Full Hash Grid approach and
propose the Stochastic Hash Grid to address them. All photons that
belong to the same cell have to be serialized (e.g., using an atomic
counter) when added to the cell. The second problem stems from
the uneven number of photons in each cell – for example, surfaces
close to lights can have a significantly higher density of photons.
This means the number of photons processed in each query can be
significantly different between camera vertices in the warp, low-
ering the GPU efficiency. Instead of storing all photons, they pro-
pose to store only one photon for each cell, uniformly randomly
chosen from all photons that belong to the cell, with the energy
increased accordingly. In their implementation each cell has an
atomic counter and whenever a photon should be stored in a cell, it
is simply written there and the counter is increased. For rendering,
the energy of the photon is multiplied by the value of the counter.

6.2 Rectified Stochastic Hash Grid

The Stochastic Hash Grid is based on the assumption that inde-
pendent threads tracing the photons lead to equal probability for
each photon to be the last written to a cell. Unfortunately, this is
not the case, as photons with longer paths have a higher probability
of being the last. This is demonstrated in Figure 8a, depicting the
positive (green) and negative (red) luminance difference between
SPPM and reference rendering of Cornell Box (walls with albedo
0.99). When compared to the results of Full Hash Grid (Figure 8b),
it is obvious that the original method is biased towards longer paths.
1

1The actual implementation in [Hachisuka and Jensen 2010] is correct, as
their code actually first traces all photons into a separate buffer and only

(a) Stochastic
Hash Grid

(b) Full Hash Grid (c) Rectified
Stochastic Hash Grid

Fig. 8: The positive (green)/Negative (red) difference of SPPM using the
original Stochastic Hash Grid (left) and Path Traced reference, using Cor-
nell Box with walls with albedo 0.99. The corners of the Cornell Box are
visibly lighter than they should be. Our Rectified Stochastic Hash Grid (cen-
ter) matches the results given by the Full Hash Grid (right).

GeForce GTX 580 GeForce GTX 680
PPM SPPM PBPM PPM SPPM PBPM

CoronaRoom 0.99 0.99 0.99 0.98 1.03 1.03
CoronaWatch 1.01 1.01 1.01 1.02 0.99 1.01
LivingRoom 1.03 1.03 1.00 1.01 1.03 1.01
BiolitFull 1.33 1.31 1.03 1.43 1.34 1.04
CrytekSponza 1.09 1.08 1.05 1.11 1.13 1.08
GrandCentral 1.03 1.03 1.01 0.98 0.98 1.02

Average 1.09 1.09 1.01 1.10 1.10 1.03

Table IV. : WhileQuery speedup: Speedup of WhileQuery over Naive-
Query tested on Progressive Photon Mapping (PPM), Stochastic Progres-
sive Photon Mapping (SPPM), and Progressive Bidirectional Photon Map-
ping (PBPM).

Our Rectified Stochastic Hash Grid (Figure 8c) selects photons
using reservoir sampling (see Algorithm R in [Vitter 1985]), where
the nth photon replaces the stored photon with a probability of p =
1
n

. This gives each photon an equal probability to be selected for
the cell, irrespective of the order they arrive in.

Our second modification solves a possible race condition when
writing the photon into a cell. As the write of a larger structure is
not atomic, it is possible to have a result that is combined from
photons of multiple threads. To prevent this, we store each photon
into its globally unique memory location and write only the index
of the photon.

6.3 Implementation Detail: Improved Hash Grid
Query

Algorithm 2 shows two different approaches to performing a range
query in a Hash Grid. The standard NaiveQuery processes all cells
that are within range in a serial manner. On a GPU, all threads wait
until each thread has processed all photons in its current cell before
processing the next cell. This means that even if the total number
of photons is the same across the threads, some threads might be
idle, while others are still processing their photons from a given
cell. Our WhileQuery removes this issue in a manner similar to the
“while-while” loop used in [Aila and Laine 2009]. First all threads
find their next photon to process, from all the cells in range, and
then are the photons processed. This way the query execution is

then builds the Stochastic Hash Grid on top of all the photons, removing
the dependency on path length, so the results given are correct.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

14 • T. Davidovič et al.

GeForce GTX 580

Full Rectified Stochastic kD-tree
Algorithm #photons Light Construct. Camera Light Camera Light Construct. Camera

CoronaRoom 147k 16.81 ms 1.56 ms 10.82 ms 16.72 ms 10.59 ms 18.50 ms 34.45 ms 15.37 ms
CoronaWatch 175k 15.18 ms 1.68 ms 14.77 ms 15.21 ms 12.97 ms 14.69 ms 41.76 ms 20.75 ms
LivingRoom 1788k 49.93 ms 9.49 ms 27.29 ms 51.52 ms 21.16 ms 47.85 ms 506.27 ms 31.56 ms
BiolitFull 1493k 36.73 ms 6.69 ms 17.78 ms 37.95 ms 12.32 ms 35.55 ms 504.84 ms 25.05 ms
CrytekSponza 571k 42.73 ms 3.50 ms 14.26 ms 43.65 ms 12.14 ms 36.77 ms 191.52 ms 13.51 ms
GrandCentral 746k 44.30 ms 4.54 ms 18.76 ms 44.77 ms 16.02 ms 42.00 ms 254.72 ms 20.18 ms

GeForce GTX 680

CoronaRoom 147k 16.09 ms 2.05 ms 14.65 ms 16.55 ms 14.53 ms 16.20 ms 32.79 ms 16.46 ms
CoronaWatch 175k 15.48 ms 2.27 ms 17.20 ms 15.50 ms 16.55 ms 14.97 ms 44.36 ms 21.69 ms
LivingRoom 1788k 38.59 ms 17.36 ms 27.39 ms 41.61 ms 20.24 ms 36.67 ms 603.88 ms 30.10 ms
BiolitFull 1493k 27.70 ms 12.49 ms 19.39 ms 30.96 ms 14.73 ms 25.42 ms 610.04 ms 24.20 ms
CrytekSponza 571k 27.45 ms 5.83 ms 17.16 ms 28.35 ms 15.84 ms 24.16 ms 232.81 ms 15.95 ms
GrandCentral 746k 31.12 ms 7.64 ms 23.49 ms 34.56 ms 19.79 ms 35.97 ms 311.52 ms 18.92 ms

Table V. : Time per frame for Full Hash Grid (Full), Rectified Stochastic Hash Grid (Rectified Stochastic), and kD-tree, broken down to the
separate passes of PPM: photon tracing (Light), acceleration structure construction (Construct.), and camera sub-path tracing and density
estimation (Camera). The times have been average over 15 minutes. Note that the Stochastic Hash Grid does not have a separate construction
phase, as photons are inserted during the photon tracing. The column #photons. shows the average number of photons per frame.

driven only by the number of photons for each thread and not by
their distribution within the grid cells.

We measured the performance of Progressive Photon Mapping
(PPM), Stochastic Progressive Photon Mapping (SPPM), and Pro-
gressive Bidirectional Photon Mapping (PBPM) using both query
algorithms on Full Hash Grid. Table IV represents the results as a
speedup of the whole algorithm when using WhileQuery. We see
that in many scenes the difference for both PPM and SPPM is neg-
ligible. However, in BiolitFull and CrytekSponza the speedup is
10-43%, as both scenes have greatly varying photon density. The
effect on PBPM is significantly smaller, possibly due to the overall
complexity of the algorithm, meaning the density estimation itself
represents smaller fraction of the total time. The effect is more pro-
nounced on GTX 680 than on GTX 580.

6.4 Results and Dicussion

In this section we discuss memory requirements and performance
of these structures. All our implementations are single-kernel (the
performance reasons are identical to LVC-BPT) and we therefore
omit the sk suffix from the acronyms.

Memory requirements. Both Full Hash Grid and Rectified
Stochastic Hash Grid require only 4 B per cell. In our setup the
Hash Grids occupy only 3.5 MB. kD-tree memory requirements de-
pend on the specific flavor used, but in our tests the size of the tree
was always below 20 MB. In all cases, the required storage is dom-
inated by the photons, not the data structure.

Performance. Table VI shows the relative speedup of the three
acceleration structures as tested on PPM: Full Hash Grid (Full),
Stochastic Hash Grid (Stoch.), and kD-tree (kD). To compare them
we use the same time to the same quality (RMSE) method intro-
duced in Section 5.4. Our baseline is RMSE achieved by Full Hash
Grid on GTX 580 in 10 minutes.

We can see that the overall performance of kD-trees is, at best,
2× slower than the Full Hash Grid: not only is the build time of the
kD-tree larger than for Full Hash Grid (up to 75×), but the queries

themselves also take slightly more time, as the traversal of the tree
is more costly than simply gathering photons from 8 cells.

We note that Hash Grid, unlike kD-tree, is susceptible to hash
collisions, where the 8 examined cells will include photons from
different parts of the scene. This effect is responsible for the longer
query times in the LivingRoom, where the highly concentrated
caustic photons have to be evaluated in multiple cells across the
scene. Even so, the overall performance of the Full Hash Grid on
this scene is better than the kD-tree, due to the shorter build time.

While the Rectified Stochastic Hash Grid is about 25% faster,
per frame, the lower number of photons used in density estimation
results in an overall lower performance than the Full Hash Grid.
We conclude that the cost of building a Full Hash Grid is negligible
compared to the benefits and use it in all our tests.

6.5 Conclusions

In this section we investigated three progressive algorithms based
on Photon Mapping, namely Progressive Photon Mapping (PPM),
Stochastic Progressive Photon Mapping (SPPM), and Progressive
Bidirectional Photon Mapping (PBPM). The common element of
all the algorithms is density estimation, based on gathering pho-
tons in a certain radius from a query point. We examined three data
structures designed to accellerate this process: kD-tree, Full Hash
Grid, and Rectified Stochastic Hash Grid. Note that we did not use
the original Stochastic Hash Grid [Hachisuka and Jensen 2010],
as its incorrect convergence prevents using time to a given quality
metrics.

As an implementation improvement of Hash Grid queries, we
proposed the WhileQuery that processes photons from all cells as
a single group, reducing thread divergence during evaluation. This
speeds up range queries on Full Hash Grid by up to 43% and is
used in all our tests.

While the Rectified Stochastic Hash Grid is faster, per frame,
than the Full Hash Grid, owing to the fact it has no construction
phase, this does not make up for the lower number of stored pho-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

Light Transport Simulation on GPU • 15

def NaiveQuery:
activeCell = cellsInRange.nextCell
while activeCell 6= None:

activePhoton = activeCell.nextPhoton
while activePhoton 6= None:

if activePhoton is in range:
Process activePhoton

activePhoton = activeCell.nextPhoton
activeCell = cellsInRange.nextCell

def WhileQuery:
activeCell = cellsInRange.nextCell
while True:

repeat
activePhoton = activeCell.nextPhoton
if activePhoton = None:

activeCell = cellsInRange.nextCell
activePhoton = activeCell.nextPhoton
if activeCell = None:

return

if activePhoton not in range:
activePhoton = None

until activePhoton 6= None
Process activePhoton

Algorithm 2: Hash Grid Query: The NaiveQuery processes
each cell in range serially, introducing possible inefficiencies
when cells examined by threads in a warp contain different
numbers of photons. The WhileQuery essentially concatenates
all photons from all cells in range and processes this list, lim-
iting the inefficiency only to cases when the total number of
photons in range differs between threads.

GeForce GTX 580 GeForce GTX 680
Full Stoch. kD Full Stoch. kD

CoronaRoom 1.00 0.87 0.43 0.91 0.78 0.46
CoronaWatch 1.00 0.54 0.44 0.91 0.48 0.43
LivingRoom 1.00 0.51 0.15 1.06 0.59 0.13
BiolitFull 1.00 0.45 0.11 1.04 0.50 0.10
CrytekSponza 1.00 0.64 0.25 1.21 0.80 0.22
GrandCentral 1.00 0.53 0.21 1.10 0.61 0.18

Average 1.00 0.55 0.22 1.06 0.61 0.20

Table VI. : Acceleration Structure comparison: Speedup, in terms of time
to a given quality, of Full Hash Grid (Full), Rectified Stochastic Hash Grid
(Stoch.), and kD-tree (kD), relative to Full Hash Grid on GTX 580.

tons, resulting in 13 to 55% slower performance in all scenes ex-
cept the CrytekSponza. Both Hash Grids significantly outperform
kD-tree, mainly due to its substantial construction cost. As result,
we recommend using the Full Hash Grid with our WhileQuery for
a GPU implementation of PM methods.

7. VERTEX CONNECTION AND MERGING

In this section we combine the experience gathered from the pre-
vious sections to introduce the first GPU implementation of the re-
cent Vertex Connection and Merging (VCM) algorithm [Georgiev

(a) Bidirectional
Path Tracing

(b) Progressive
Bidirectional PM

(c) Vertex Connection
and Merging

Fig. 9: The reflected caustics (red) are extremely difficult for Bidirectional
Path Tracing (left). Progressive Bidirectional Photon Mapping (middle), on
the other hand, results in noticeable noise on the diffuse walls (green). In the
same rendering time (10s), Vertex Connection and Merging (right) handles
both effects well.

et al. 2012]. While Bidirectional Path Tracing fails to capture re-
flected caustics and methods based on Photon Mapping have dif-
ficulties producing noise-free diffuse surfaces under illumination
from distant light sources, Vertex Connection and Merging com-
bines the best of both algorithms by using Multiple Importance
Sampling to give a high weight to the best strategy for each sit-
uation (see Figure 9). Hachisuka et al. [2012] developed the same
idea concurrently, using different derivations, under the name Uni-
fied Path Sampling. For the purpose of this paper we choose the
former name, but note that both approaches result in the same al-
gorithm.

7.1 Algorithm Overview

In the original paper the authors trace an equal number of light and
camera sub-paths, forming predetermined path pairs. First, all light
sub-paths are traced and their vertices are stored. Then camera sub-
paths are traced, each camera sub-path vertex is connected to all
vertices on the corresponding light sub-path, as well as merged with
vertices (i.e., ‘photons’), from all light sub-paths, that are within a
given range. Vertex merging is a name used for an operation virtu-
ally identical to the range query in Progressive Bidirectional Photon
Mapping, the only difference being the different calculation of the
Multiple Importance Sampling weights.

7.2 Proposed GPU Implementation

Given our Light Vertex Cache Bidirectional Path Tracing (LVC-
BPT), introduced in Section 5.3, and our GPU implementation of
Bidirectional Photon Mapping (Section 6), GPU implementation of
Vertex Connection Merging is easy. Our implementation first traces
all light sub-paths. Then a Full Hash Grid is built over these vertices
to accelerate range queries (we use our WhileQuery), as in PBPM.
Finally, a camera pass is performed, where each camera sub-path
vertex is connected to a predetermined number of light sub-path
vertices (identical to LVC-BPT) and also merged with light sub-
path vertices using a range query (identical to PBPM).

7.3 Results and Discussion

Memory requirements. Memory requirements are almost identi-
cal to the requirements of LVC-BPT. Using the formulas introduced
in Table II we arrive at 17 to 171 MB for VCMsk, with VCMmk
adding another 137 to 158 MB. We also need memory for the Full
Hash Grid used to accelerate vertex merging range queries, leading
to a memory footprint of 3.5 MB.

Kernel configurations. Similar to Light Vertex Cache BPT, we
tested both single-kernel (VCMsk) and multi-kernel (VCMmk) im-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

16 • T. Davidovič et al.

GeForce GTX 580 GeForce GTX 680
VCMsk VCMmk VCMsk VCMmk

CoronaRoom 1.00× 0.98× 0.93× 0.85×
CoronaWatch 1.00× 0.79× 0.87× 0.71×
LivingRoom 1.00× 1.04× 0.92× 0.88×
BiolitFull 1.00× 1.03× 0.92× 0.86×
CrytekSponza 1.00× 0.91× 1.00× 0.85×
GrandCentral 1.00× 0.97× 0.92× 0.87×

Average 1.00× 0.95× 0.93× 0.83×

Table VII. : Relative performance of VCM implemented with a single kernel
(VCMsk) and using two kernels (VCMmk).

plementation of VCM. Table VII shows performance relative to
VCMsk on GTX 580. We can see that in almost all cases, VCMmk
is inferior to VCMsk. On GTX 580, VCMmk outperforms VCMsk
in two scenes by 3 and 4% respectively, but in general is ap-
proximately 5% slower. This difference is more pronounced on
GTX 680. Because multi-kernel VCM uses a larger light sub-path
vertex structure as well as the whole merging stage, it has greater
pressure on the memory system, leading to a decrease in perfor-
mance with respect to the single-kernel implementation. We con-
clude that the single-kernel VCM is the better choice for both
GPUs.

To conclude, our Vertex Connection and Merging implementa-
tion draws heavily on the experiences from both Bidirectional Path
Tracing and Progressive Bidirectional Photon Mapping implemen-
tations. The main approach is almost identical to our LVC-BPT,
using a single-kernel implementation. Compared to the CPU imple-
mentation used in [Georgiev et al. 2012], our GPU implementation
achieves a 6 to 10× speedup on the scenes used in the paper.

8. ALGORITHM COMPARISON

Up until now we have focused on optimizing the individual algo-
rithms. Now, with state-of-the-art GPU implementations of a num-
ber of light transport simulations algorithms at our disposal, within
a single framework, we have a unique opportunity to compare the
algorithms against each other. Our comparison is “unbiased” in the
sense that we did not introduce any of the algorithms in this paper,
and so have no motivation to selectively prefer any of them. Our
results are not strictly GPU-specific; we are not aware of a similar
unbiased comparison for CPU implementations either.

Figure 10 shows results for GTX 680. PPM, SPPM, and PBPM
use single-kernel implementations and all algorithms that per-
form density estimation use the Full Hash Grid and our While-
Query. The results for GTX 580, using multi-kernel versions of
RegenerationPTmk and LVC-BPTmk, closely follow the results of
GTX 680. The graphs are given in the supplemental material. Our
references are computed by NaiveBPT in 10 hours, except for the
LivingRoom scene, where the reference is computed by VCMsk,
as BPT cannot resolve the reflected caustic even after 10 hours.

8.1 Path Tracing

Path Tracing excels in scenes with a simple illumination, as ex-
pected. From our test scenes, it achieves the best results on Coro-
naRoom, a mostly diffuse scene where majority of the illumination
comes from an environment lighting behind the glass-less window.

Good results are also achieved on CoronaWatch, which is dom-
inated by direct illumination. However, on Figure 10b we can see
that the convergence of PT starts to level off after approximately
100 s, due to inapproprietly sampled gloss-to-gloss transport.

The somewhat surprising poor performance on GrandCentral is
caused by the many individual point lights in the niches beneath
the ceiling. While the overall illumination of the scene is smooth,
these niches are each illuminated by essentially a single point light,
which poses a great challenge for next event estimation and causes
majority of the variance we see in the graph.

The other three scenes are strongly illuminated by indirect light
sources, which renders next event estimation essentially useless in
these cases and the overall convergence of PT suffers.

8.2 Bidirectional Path Tracing

Bidirectional Path Tracing performs well on all the scenes except
LivingRoom, a scene tailored to showcase Vertex Connection and
Merging, where BPT does not have any technique suitable for effi-
ciently capturing reflected caustics.

On the two scenes dominated by direct illumination, i.e., Coro-
naRoom and CoronaWatch, the algorithm is slower than Path Trac-
ing, as the extended set of techniques offered by BPT is not really
useful. In GrandCentral, the niches are illuminated by paths traced
from the point lights, greatly reducing noise when compared to PT,
and the algorithm naturally handles well both scenes that are dom-
inated by indirect illumination (BiolitFull and CrytekSponza).

8.3 Photon Mapping-based Methods

The Photon Mapping-based methods are most beneficial on Liv-
ingRoom, where none of the path-based algorithms can efficiently
capture the reflected caustics. Somewhat surprising is the good be-
havior of Progressive Bidirectional Photon Mapping on both Coro-
naRoom and CoronaWatch, when compared to Progressive Photon
Mapping and Stochastic Progressive Photon Mapping. The key in-
sight here is that PBPM has Path Tracing without next event es-
timation amongst its techniques and both scenes, with their large
area lights, represent a very good case for this technique, up to the
point that the convergence on CoronaWatch is actually dominated
by it and matches the convergence rate of path based techniques.

In the case of BiolitFull, PPM and SPPM give very good results
in a short time. This is due to mostly diffuse nature of the scene,
where each photon contributes to several pixels, giving a good, al-
beit blurry, initial estimate (Figure 11).

However, in the CrytekSponza, which is purely diffuse and also
indirectly illuminated, the results are quite different. Unlike Biolit-
Full, where all the lights are within a single room and roughly half
the scene and third of the lightsources are visible to the camera, in
CrytekSponza we see only a fraction of the scene and all the lights
are completely outside the view. As result, a significantly lower
fraction of all photons contributes to the frames (0.11% vs 6.3%),
giving much more noisy results.

8.4 Vertex Connection and Merging

VCM excels in LivingRoom, which has been tailored to showcase
the algorithm. It resolves the reflected caustics using techniques
from PBPM, while resolving the diffuse light transport with BPT
techniques. In the other scenes however, VCM simply mirrors the
performance of BPT, in general being slightly slower, as the vertex
merging techniques have a rather negligible effect at the cost of
non-negligible overhead.

9. CONCLUSIONS

In this paper we presented an extensive study of GPU-based im-
plementations of several progressive light transport simulation al-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

Light Transport Simulation on GPU • 17

Time [s]

R
M

SE
[-

]

10-1 100 101 102 103

10-2

10-1

(a) CoronaRoom

10-1 100 101 102 103

10-2

10-1

(b) CoronaWatch

10-1 100 101 102 103

10-1

100

(c) LivingRoom

10-1 100 101 102 103

10-2

10-1

100

(d) BiolitFull

10-1 100 101 102 103

10-2

10-1

(e) CrytekSponza

10-1 100 101 102 103

10-2

10-1

100

(f) GrandCentral

RegenerationPTsk (ours) LVC-BPTsk (ours) PPM SPPM PBPM (ours) VCMsk (ours)

Fig. 10: The log-log plot of RMSE-vs-time convergence of the six tested methods on each of the test scenes.

(a) PPM - 1st iteration (0.11s) (b) BPT - 1st iteration (0.17s)

(c) PPM - 10th iteration (0.86s) (d) BPT - 10th iteration (1.63s)

Fig. 11: After the first iteration (top) the PPM (a), with a large radius, gives
a better initial intuition about the lighting than BPT (b). After the tenth
iteration (bottom) the asymptotically faster convergence of BPT has already
removed this advantage.

gorithms. For each algorithm, we evaluated existing and new ap-
proaches on GPUs of two different NVIDIA architectures, the older
Fermi (GTX 580) and the newer Kepler (GTX 680) architecture.

In the Path Tracing section we examined the low-level details of
mapping the basic building block of the more complex algorithms
– path sampling – onto the GPU. We conclude that for optimal
performance it is beneficial to use a low number of separate kernels,
as the lower number of loads and stores outweighs the gains from
improved GPU occupancy. Notably, on Kepler, the speed gained
by using Path Tracing with Regeneration with only a single kernel
actually matches the speed gained by stream compaction used in
state-of-the-art Streaming Path Tracing with Regeneration, using 2
kernels.

In the Bidirectional Path Tracing section, we show that maxi-
mal simplification of the algorithm structure leads to the best per-
formance. We proposed our Light Vertex Cache BPT, storing only
light path vertices without the notion of sub-paths. Doing so in-
creases the performance by 30-60% when compared to the state-
of-the-art, while at the same time removing the necessity of a max-
imum path length.

In the Photon Mapping section we show that a simpler but
asymptotically slower algorithm, in our case the Hash Grid, can
outperform a more complex asymptotically faster algorithm, in our
case the kD-tree. Another important low level optimization is our
WhileQuery, used to gather photons from a Hash Grid. By remov-
ing thread synchronization after gathering photons from a single
cell, we reduce the thread divergence of the gather process, which
can increase the performance by up to 40%. All of the findings

are combined in Vertex Connection and Merging, showing the first
GPU implementation of the algorithm.

Our algorithm comparison shows the raw performance of Path
Tracing makes it ideal for scenes with a low lighting complex-
ity, but the more sophisticated sampling strategies of Bidirectional
Path Tracing are useful in scenes with more complex lighting. In
most scenes, the performance of Vertex Connection and Merging
follows that of BPT, but due to the overhead of merging (which
has only a marginal impact on the final image) it is about 15%
slower to achieve the same image quality. Of course, in scenes with
a strong reflected caustic component, VCM outperforms BPT since
the merging is essential to capturing these light paths. The Photon
Mapping based algorithms do not present a significant advantage
over any of the other algorithms.

In the future, it would be interesting to examine Metropolis
Light Transport (MLT) on the GPU, such as GPU implementation
of [Hachisuka and Jensen 2011], but for some of the presented
algorithms (Light Vertex Cache, VCM), there is no established
MLT apporoach at all. Another challenging future work venue con-
cerns out-of-core and over-the-network texture accesses, e.g., when
threads executing the same BSDF kernel need to access different
out-of-core texture tiles from several separate texture images.

ACKNOWLEDGMENTS
We would like to thank the following people for providing
the respective scenes: Ludvı́k Koutný (http://raw.bluefile.
cz/) for CoronaRoom, Jerome White for CoronaWatch, Iliyan
Georgiev (http://www.iliyan.com) for LivingRoom, Jiřı́ “Bi-
olit” Friml (http://biolit.wordpress.com/) for BiolitFull,
Marko Dabrovic (http://hdri.cgtechniques.com/~sponza/
files/) and Frank Meinl from CryTEK (http://www.crytek.
com/cryengine/cryengine3/downloads) for CrytekSponza,
and the Cornell University Program of Computer Graphics (http:
//www.graphics.cornell.edu/) for GrandCentral. We would
also like to thank Jan Novák and Iliyan Georgiev for their consul-
tations on many finer implementation details. Thanks to Petr Ka-
dleček and Martin Kahoun for proofreading. This work was sup-
ported by the Czech Science Foundation grant P202-13-26189S.

REFERENCES

AILA, T., KARRAS, T., AND LAINE, S. 2013. On quality metrics of bound-
ing volume hierarchies. In Proc. High-Performance Graphics 2013. 101–
107.

AILA, T. AND LAINE, S. 2009. Understanding the efficiency of ray traver-
sal on GPUs. In Proc. High-Performance Graphics 2009. 145–149.

AILA, T., LAINE, S., AND KARRAS, T. 2012. Understanding the effi-
ciency of ray traversal on GPUs – Kepler and Fermi addendum. NVIDIA
Technical Report NVR-2012-02, NVIDIA Corporation.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

http://raw.bluefile.cz/
http://raw.bluefile.cz/
http://www.iliyan.com
http://biolit.wordpress.com/
http://hdri.cgtechniques.com/~sponza/files/
http://hdri.cgtechniques.com/~sponza/files/
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.graphics.cornell.edu/
http://www.graphics.cornell.edu/

18 • T. Davidovič et al.

CARR, N. A., HALL, J. D., AND HART, J. C. 2002. The ray engine. In
Proc. Graphics Hardware 2002. 37–46.

DACHSBACHER, C., KŘIVÁNEK, J., HAŠAN, M., ARBREE, A., WALTER,
B., AND NOVÁK, J. 2013. Scalable realistic rendering with many-light
methods. In Compute Graphics Forum (STAR).

FOLEY, T. AND SUGERMAN, J. 2005. Kd-tree acceleration structures for a
GPU raytracer. In Proc. of Graphics Hardware 2005. 15–22.

GEORGIEV, I. 2012. Implementing vertex connection and merging. Tech.
Rep. Nov. 12, Saarland University.

GEORGIEV, I., KŘIVÁNEK, J., DAVIDOVIČ, T., AND SLUSALLEK, P.
2012. Light transport simulation with vertex connection and merging.
ACM Trans. Graph. 31, 6 (Nov.), 192:1–192:10.

HACHISUKA, T. AND JENSEN, H. W. 2009. Stochastic progressive photon
mapping. ACM Trans. Graph. 28, 5 (Dec.), 141:1–141:8.

HACHISUKA, T. AND JENSEN, H. W. 2010. Parallel progressive photon
mapping on GPUs. In ACM SIGGRAPH ASIA 2010 Sketches. 54:1–54:1.

HACHISUKA, T. AND JENSEN, H. W. 2011. Robust adaptive photon trac-
ing using photon path visibility. ACM Trans. Graph. 30, 5 (Oct.), 114:1–
114:11.

HACHISUKA, T., OGAKI, S., AND JENSEN, H. W. 2008. Progressive pho-
ton mapping. ACM Trans. Graph. 27, 5 (Dec.), 130:1–130:8.

HACHISUKA, T., PANTALEONI, J., AND JENSEN, H. W. 2012. A path
space extension for robust light transport simulation. ACM Trans.
Graph. 31, 6 (Nov.), 191:1–191:10.

HAVRAN, V. 2000. Heuristic ray shooting algorithms. Ph.D. thesis, Faculty
of Electrical Engineering, Czech Technical University in Prague.

HOU, Q., SUN, X., ZHOU, K., LAUTERBACH, C., AND MANOCHA, D.
2011. Memory-scalable GPU spatial hierarchy construction. Visualiza-
tion and Computer Graphics, IEEE Transactions on 17, 4, 466–474.

JENKINS, B. 1997. Hash functions. Dr Dobbs Journal 22, 9.
JENSEN, H. W. 2001. Realistic Image Synthesis using Photon Mapping.

A.K. Peters.
KAJIYA, J. T. 1986. The Rendering Equation. In Computer Graphics (Proc.

of SIGGRAPH). 143–150.
KALOJANOV, J. AND SLUSALLEK, P. 2009. A parallel algorithm for con-

struction of uniform grids. In Proc. of High-Performance Graphics 2009.
23–28.

KARRAS, T. AND AILA, T. 2013. Fast parallel construction of high-
quality bounding volume hierarchies. Proc. of High-Performance Graph-
ics 2013, 89–99.

KARRAS, T., AILA, T., AND LAINE, S. 2012. Understand-
ing the efficiency of ray traversal on GPUs framework. http:

//code.google.com/p/understanding-the-efficiency-of-

ray-traversal-on-gpus/.
KELLER, A. 1997. Instant Radiosity. In Computer Graphics (Proc. of

SIGGRAPH). 49–56.
KNAUS, C. AND ZWICKER, M. 2011. Progressive photon mapping: A

probabilistic approach. ACM Trans. Graph. 30, 3 (May), 25:1–25:13.
KŘIVÁNEK, J., HAŠAN, M., ARBREE, A., DACHSBACHER, C., KELLER,

A., AND WALTER, B. 2012. Optimizing realistic rendering with many-
light methods. In ACM SIGGRAPH 2012 Courses. 7:1–7:217.

LAFORTUNE, E. AND WILLEMS, Y. D. 1993. Bi-directional path tracing.
In Proc. of CompuGraphics ’93.

LAINE, S., KARRAS, T., AND AILA, T. 2013. Megakernels considered
harmful: Wavefront path tracing on GPUs. Proc of High-Performance
Graphics 2013, 137–143.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D., AND

MANOCHA, D. 2009. Fast BVH construction on GPUs. In Computer
Graphics Forum. Vol. 28. 375–384.

NOVÁK, J., HAVRAN, V., AND DASCHBACHER, C. 2010. Path regenera-
tion for interactive path tracing. In EUROGRAPHICS 2010, short papers.
61–64.

NVIDIA. 2011. Fermi Compute Architecture Whitepaper.

NVIDIA. 2012a. CUDA C Programming Guide 5.0. NVIDIA.

NVIDIA. 2012b. NVIDIA GeForce GTX 680 Whitepaper.

PAJOT, A., BARTHE, L., PAULIN, M., AND POULIN, P. 2011. Combina-
torial bidirectional path-tracing for efficient hybrid CPU/GPU rendering.
In Computer Graphics Forum. Vol. 30. 315–324.

PANTALEONI, J. AND LUEBKE, D. 2010. HLBVH: hierarchical LBVH
construction for real-time ray tracing of dynamic geometry. In Proc. of
High-Performance Graphics 2010. 87–95.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H., HOBEROCK,
J., LUEBKE, D., MCALLISTER, D., MCGUIRE, M., MORLEY, K., RO-
BISON, A., ET AL. 2010. OptiX: A general purpose ray tracing engine.
ACM Trans. Graph. 29, 4 (July), 66:1–66:13.

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P. 2007.
Stackless kd-tree traversal for high performance GPU ray tracing. In
Computer Graphics Forum. Vol. 26. 415–424.

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. 2002.
Ray tracing on programmable graphics hardware. In ACM Trans. Graph.
Vol. 21. 703–712.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN, H. W., AND

HANRAHAN, P. 2003. Photon mapping on programmable graphics hard-
ware. In Proc. Graphics Hardware 2003. 41–50.

RITSCHEL, T., DACHSBACHER, C., GROSCH, T., AND KAUTZ, J. 2012.
The state of the art in interactive global illumination. In Computer Graph-
ics Forum (STAR). Vol. 31. 160–188.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D. 2007. Scan
primitives for GPU computing. In Proc. Graphics Hardware 2007. 97–
106.

STICH, M., FRIEDRICH, H., AND DIETRICH, A. 2009. Spatial splits in
bounding volume hierarchies. In Proc. of High-Performance Graphics
2009. 7–13.

VAN ANTWERPEN, D. 2011a. Improving SIMD efficiency for parallel
Monte Carlo light transport on the GPU. In Proc. of High-Performance
Graphics 2011. 41–50.

VAN ANTWERPEN, D. 2011b. Unbiased physically based rendering on the
GPU. M.S. thesis, Delft University of Technology, the Netherlands.

VEACH, E. AND GUIBAS, L. 1994. Bidirectional Estimators for Light
Transport. In Proc. of Eurographics Rendering Workshop. 147–162.

VEACH, E. AND GUIBAS, L. J. 1995. Optimally combining sampling tech-
niques for monte carlo rendering. In Computer Graphics (Proc. of SIG-
GRAPH). 419–428.

VITTER, J. S. 1985. Random sampling with a reservoir. ACM Trans. Math.
Softw. 11, 1 (Mar.), 37–57.

VORBA, J. 2011. Optimal strategy for connecting light paths in bidirec-
tional methods for global illumination computation. M.S. thesis, Charles
University in Prague.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Inter-
active rendering with coherent ray tracing. In Computer Graphics Forum.
Vol. 20. 153–165.

WOOP, S., FENG, L., WALD, I., AND BENTHIN, C. 2013. Embree: Ray
tracing kernels for CPUs and the Xeon Phi architecture. In ACM SIG-
GRAPH 2013 Talks. 44:1–44:1.

ZAFAR, F., OLANO, M., AND CURTIS, A. 2010. GPU random numbers via
the tiny encryption algorithm. In Proc. of High-Performance Graphics
2010. 133–141.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/

Light Transport Simulation on GPU • 19

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time kd-tree
construction on graphics hardware. ACM Trans. Graph. 27, 5 (Dec.),
126:1–126:11.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Author's version - the definitive version will be published in ACM TOG

	Introduction
	Related Work
	Overview
	Terminology
	Testing Setup

	Path Tracing
	Algorithm Overview
	Survey of Existing GPU Implementations
	Proposed Alternative Implementations
	Results and Discussion
	Conclusion

	Bidirectional Path Tracing
	Algorithm Overview
	Survey of Existing GPU Implementations
	Proposed Alternative: Light Vertex Cache BPT
	Results and Discussion
	Conclusions

	Photon Mapping-Based Approaches
	Survey of Existing GPU Implementations of Photon Map Search Structures
	Rectified Stochastic Hash Grid
	Implementation Detail: Improved Hash Grid Query
	Results and Dicussion
	Conclusions

	Vertex Connection and Merging
	Algorithm Overview
	Proposed GPU Implementation
	Results and Discussion

	Algorithm Comparison
	Path Tracing
	Bidirectional Path Tracing
	Photon Mapping-based Methods
	Vertex Connection and Merging

	Conclusions

